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Abstract

Standard mathematical models for random genetic drift in finite populations like the Wright-Fisher model do not effectively mimic results from actual experiments.  The usual explanation for this discrepancy is that the experiments never exactly match the assumptions of simple random genetic drift.  The thesis of this paper is that the standard mathematical model is what fails to match the assumptions of the random genetic drift experiment.  Specifically it ignores the restricted choice of gametes—one egg and one sperm.

Assumptions for Random Genetic Drift in Finite Populations

From each generation N diploid individuals are chosen to be parents for the next generation.  Reproduction is sexual with equal numbers of males and females.  For simplicity we follow only one gene with two alleles.  Both of the totally homozygous states are stable absorbing equilibria.  This is true in both the standard model and in the experimental results.  The discrepancy lies in the rate of loss of heterozygosity.

1.  The Standard Model

The standard model has the N diploid individuals producing an infinite pool of gametes whose allele frequencies match those of the parent group, say p for the ‘A’ allele and q=1-p for ‘a’ allele.  The offspring are then produced with frequencies p2 for genotype AA, 2pq for genotype Aa, and q2 for genotype aa.  From this group another N individuals are chosen at random to be parents for the next generation, etcetera. {See Chapter 7 of H&C, which comes from F and W}

The problem with the Standard Model is that it fails to account for the assumption of sexual reproduction.  That assumption leads us to two separate gamete pools—one for eggs and one for sperm.

1.1  An Example Illustrating the Problem with the Standard Model

Consider the case where N=2 and p=¾.  The standard model predicts progeny genotype frequencies of p2=9/16 for AA, 2pq=3/8 for Aa, and 1/16 for aa.  Thus the random draw for the next parent group is (9/16)2 = 81/256 for AA AA, 2(9/16)(3/8) = 27/64 for AA Aa, (3/8)2 = 9/64 for Aa Aa, 2(9/16)(1/16) = 9/128 for AA aa, 2(3/8)(1/16) = 3/64 for Aa aa, and (1/16)2 = 1/256 for aa aa.

This might seem reasonable until we realize that N=2 means one male and one female and p=¾ means exactly genotypes AA and Aa.  For every progeny the gamete from the AA parent must be A and the gamete from the other is equally likely to be A or a.  Thus the correct progeny genotype frequencies are ½ for AA, ½ for Aa, and zero for aa.  The correct frequencies for the next generation parent group are (½)²=¼ for AA AA, 2(½)(½) = ½ for AA Aa, (½)(½) = ¼ for Aa Aa, zero for AA aa, zero for Aa aa, and zero for aa aa.  This is clearly different from the standard model predicted frequencies.

1.2  What to Do

It seems obvious to the author that correcting the model for two separate gamete pools is the first step to resolving differences between the mathematical model and the experimental results.

2.  Corrected Model for N=2

For N=2 we have the six states: AA AA, AA Aa, AA aa, Aa Aa, Aa aa, and aa aa.  Let state i have frequency xi and heterozygosity Hi.  The state diagram showing transition probabilities is
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The state vector at generation k is
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And from the state diagram above we get the stochastic transition matrix:
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The transition to the next generation is
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Let the heterozygosity vector be
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Then the heterozygosity at generation k is
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2.1 Preservation of Allele Frequencies

We can easily verify that allele frequency is preserved.  The vector for the ‘A’ allele frequency by state is 
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.  Likewise the vector for the ‘a’ allele is 
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Then the allele frequencies for a given state vector x are 
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 so that the allele frequency at generation k will equal the initial allele frequency: 
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2.2  Behavior of the Corrected Model for N=2

The behavior of this model can be understood from an eigenvalue analysis.  The eigenvectors for the matrix ( are those state vectors for which ( will change their magnitude but leave them in the same direction.  The magnitude multiple change is called the eigenvalue.  Specifically if ( has eigenvectors v1, v2, …, v6 with corresponding eigenvalues (1, (2, …, (6 then (vi = (ivi.  Arrange the eigenvalues in decreasing order of magnitude and express the initial state in terms of the eigenvectors and we have
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For this (--(1 = (2 = 1 (v1 and v2 are the pure homozygous states AA AA and aa aa), 
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, (4 = 0.5, 
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, and (6  = 0.25.  Observe that (4k, (5k, and (6k are going to zero faster than (3k.  This means that if a3(0 and k is larger than ten then the first three eigenvectors will be the dominant components:


[image: image18.wmf]3

3

2

2

1

1

0

809

.

0

v

a

v

a

v

a

x

x

k

k

k

+

+

»

F

=


To predict the heterozygosity keep in mind that v1 and v2 are pure homozygous, i.e. HT v1 = HT v1 = 0.  So as k gets larger the heterozygosity is
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[In this N=2 case this is true even sooner since it turns out that HTv4= HTv6=0.]

2.3 Conclusion for N=2 Model

Thus the heterozygosity declines geometrically with the rate factor 0.809.  For the standard model 
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 or .75 for N=2.  The heterozygosity behavior in the corrected model corresponds to N ( 2.6 in the standard model.  This is a significant difference that can affect the interpretation of experimental results.  In particular if a species of termites is in actuality totally monogamous with mates always chosen from siblings, i.e. the N=2 case discussed here, then an analysis using the standard Wright-Fisher model (which expects a heterozygoisity loss rate of 0.75) would underestimate the actual inbreeding [T&H].

Appendix

This appendix contains the specific components for the eigenvectors (vi’s), the coefficients for the heterozygous starting state (ai’s for Aa Aa), and results for the first 10 generations starting from the heterozygous state.



Eigenvalues/Eigenvectors with Heterozygosity for N=2

	
	(1=1
	(2=1
	(3=(1+(5)/4
	(4=1/2
	(5=(1‑(5)/4
	(6=1/4

	
	v1
	v2
	v3
	v4
	v5
	v6

	AA AA
	1
	0
	-11-5(5
	1
	-11+5(5
	1

	AA Aa
	0
	0
	4+4(5
	-2
	4-4(5
	-4

	AA aa
	0
	0
	-2+2(5
	0
	-2-2(5
	2

	Aa Aa
	0
	0
	16
	0
	16
	4

	Aa aa
	0
	0
	4+4(5
	2
	4-4(5
	-4

	aa aa
	0
	1
	-11-5(5
	-1
	-11+5(5
	1

	HT vi
	0
	0
	20+4(5
	0
	20-4(5
	0


Initial state Aa Aa = 
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 so the heterozygosity at generation k starting from state Aa Aa should be

 (1/40)[( (3)k(20+4(5)+((5)k(20-4(5)] ( 0.7236(0.809k)+0.2764(-0.309)k.  Which is what we see in the table showing the results for the first 10 generations:



State Frequency by Generation Starting from Aa Aa
	t =
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	AA AA
	0
	.0625
	.1406
	.2070
	.2627
	.3079
	.3445
	.3742
	.3982
	.4177

	AA Aa
	0
	.25
	.1875
	.1719
	.1367
	.1123
	.0906
	.0734
	.0594
	.0480

	AA aa
	0
	.125
	.03125
	.0391
	.0254
	.0220
	.0172
	.0141
	.0113
	.0092

	AaAa
	1
	.25
	.3125
	.2031
	.1758
	.1377
	.1125
	.0906
	.0734
	.0594

	Aa aa
	0
	.25
	.1875
	.1719
	.1367
	.1123
	.0906
	.0734
	.0594
	.0480

	aa aa
	0
	.0625
	.1406
	.2070
	.2627
	.3079
	.3445
	.3742
	.3982
	.4177

	Ht
	1
	.5
	.5
	.375
	.3125
	.25
	.2031
	.1641
	.1328
	.1074

	Ht/Ht-1
	
	.5
	1
	.75
	.8333
	.8
	.8124
	.8080
	.8093
	.8087


Notice that Ht/Ht-1 will tend to (3.  In fact for larger N this is an appropriate method for approximating (3, the geometric heterozygosity loss rate.

Excel sheets for the N=4 case are available by email from pstaley1@san.rr.com.  A more complete article with the general strategy for N>2 is in preparation.
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