Situation 1. A population has a Normally distributed variable x. From this population we draw a Simple Random Sample of size n. The mean, μ , of the population is unknown. The standard deviation of the population, σ , is known. The mean of the sample, \overline{x} , is computed. The population variable x has the distribution $N(\mu, \sigma)$ and the sample mean \overline{x} has the distribution $N(\mu, \frac{\sigma}{\sqrt{L}})$ Here is the picture: We can estimate μ with $$\mu = \overline{x} \pm z^* \sigma / \sqrt{n}$$ Where z^* is determined by the confidence level C. The table below gives z^* for some common values of C: | С | 90% | 95% | 99% | |----|-------|-------|-------| | z* | 1.645 | 1.960 | 2.576 | ## Hypothesis Testing. The Null Hypothesis: H_0 : $\mu = \mu_0$ The Alternative Hypothesis: H_a : $\mu > \mu_0$ First compute the z statistic using the formula: $$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$ Then for significance level alpha determine z^* . Then if $z > z^*$ we reject the null hypothesis and say that we have statistically significant evidence for the alternative hypothesis. For the other alternative hypotheses, H_a : $\mu > \mu_0$ or H_a : $\mu \neq \mu_0$, we adjust the test appropriately. Situation 2. A population has a Normally distributed variable x. From this population we draw a Simple Random Sample of size n. The mean, μ , of the population is unknown. The standard deviation of the population, σ , is also unknown. From the sample we compute both the mean \overline{x} and the standard deviation s. The population variable x has the distribution $N(\mu, \sigma)$ and the sample mean \overline{x} has the distribution t-distribution with mean μ and n-1 degrees of freedom. Here is the picture: We can estimate μ with $$\mu = \overline{x} \pm t^* s / \sqrt{n}$$ Where t* is determined by the confidence level C and the degrees of freedom of the t distribution (n-1). The table below is similar to the table for the z procedures: | C | 90% | 95% | 99% | | | |----|-----------------------|-----|-----|--|--| | t* | Depends on degrees of | | | | | | _ | freedom | | | | | ## Hypothesis Testing. The Null Hypothesis: H_0 : $\mu = \mu_0$ The Alternative Hypothesis: H_a : $\mu > \mu_0$ First compute the t statistic using the formula: $$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$ Then for significance level alpha determine t^* . Then if $t > t^*$ we reject the null hypothesis and say that we have statistically significant evidence for the alternative hypothesis. For the other alternative hypotheses, H_a : $\mu > \mu_0$ or H_a : $\mu \neq \mu_0$, we adjust the test appropriately. Situation 3. A proportion p of a population has some particular outcome of interest. From this population we draw a Simple Random Sample of size n. The proportion, p, of the population is unknown. The proportion of the sample with the outcome of interest is computed as $\hat{p} = \frac{number\ of\ successes\ in\ the\ sample}{n}$. For a sufficiently large sample size the \hat{p} statistic has the distribution $N(p,\sqrt{\frac{p(1-p)}{n}})$. We can estimate p with $$p = \widehat{p} \pm z^* \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}$$ Where z* is determined by the confidence level C. The table below gives z* for some common values of C: | С | 90% | 95% | 99% | |----|-------|-------|-------| | z* | 1.645 | 1.960 | 2.576 | ## Hypothesis Testing. The Null Hypothesis: $H_0: p = p_0$ The Alternative Hypothesis: $H_a: p > p_0$ First compute the z statistic using the formula: $$z = \frac{\widehat{p} - p_0}{\sqrt{\frac{p_o(1 - p_0)}{n}}}$$ Then for significance level alpha determine z^* . Then if $z > z^*$ we reject the null hypothesis and say that we have statistically significant evidence for the alternative hypothesis. For the other alternative hypotheses, H_a : $p > p_0$ or H_a : $p \neq p_0$, we adjust the test appropriately.