M252 Practice Exam 3—Formula Recitation Section

Chapter ﬂ Formulas

Let P=(;0:Y0,ZO) a‘nd Q‘—‘(Xi,)’l,zl) be pOIHtS in‘3_space; n= <uhu2’u3>s v =<y, ,V2,V3>,
w = <w;,W2,w3>, B = <a,b,c>, m;, and n; be vectors in 3-Space. Vectors are shown in
bold for the questions. Use the arrow notation for vectors in your answers.

Give the formulas for the following:

The dot product of u and v:
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The cosine of the angle between u and v:
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u and v are orthogonal: The projection of u onto v:
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'| The norm of v: The vector component of u orthogonal to v:
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The unit vector in the direction of v:
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The cross product of u and v.
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The vector equation of a line through P
and parallel to <a,b,c>:
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The standard equation of a plane through P
with normal vector <a,b,c>:
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The parametric equations of a line

The cosine of the angle between two planes
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The vector equation of a line through P
and Q:
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The distance between the point Q and a plane
through P with normal vector n:
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The vector equation of a plane through P
with normal vector n = <a,b,c>:
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The distance between the point Q and a line
through P with direction vector u:
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The volume of the paralielepiped with The triple scalar product of u, v, and w:
vectors u, v, and w as adjacent edges: R 5 > '
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Chapter lé-Formulas

Let f(t) be a real valued function of t; r(t) = <x(t),y(t),z(t)> and u(t) be vector valued
functions; r(t) be the position vector, v(t) be the velocity, and a(t) be the acceleration; C
be a smooth curve given by r(t) = x(t)i + y(t)j + z(t)k on the interval (a,b).

Give the formulas for the following:

r(t) is continuous at the point t = a:
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The derivative of r(t): _, - If r(t) - r(t) = constant then
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Acceleratlon a(t) =
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Projectile position function for an initial
velocity vo and an initial position rp: r(t)=
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The arc length of C: s =
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The unit tangent vector: T(t) =
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The arc length function on C: s(t) =
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Prmmple unit normal vector N@)=
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The curvature for C given by the arc length
parameterization r(s): K =
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Acceleration as a linear combination of T

and N: S
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The curvature for C given by r(t): K=
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The tangential component of acceleration:
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Acceleration in terms of speed (ds/ dt) and
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The normal or centripetal component of

acceleration: ay =
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A vector orthogonal to the unit vector
x(i +y(t)j :
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