Chapter 1 Formulas

Let $P=(x_0,y_0,z_0)$ and $Q=(x_1,y_1,z_1)$ be points in 3-Space; $\mathbf{u}=\langle \mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\rangle$, $\mathbf{v}=\langle \mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\rangle$, $\mathbf{w}=\langle \mathbf{w}_1,\mathbf{w}_2,\mathbf{w}_3\rangle$, $\mathbf{n}=\langle \mathbf{a},\mathbf{b},\mathbf{c}\rangle$, \mathbf{n}_1 , and \mathbf{n}_2 be vectors in 3-Space. Vectors are shown in bold for the questions. Use the arrow notation for vectors in your answers.

Give the formulas for the following:

Give the formulas for the following:	
The dot product of u and v :	The cosine of the angle between u and v :
$\vec{u} - \vec{V} = u_1 v_1 + u_2 v_2 + u_3 v_3$	$\cos(\Theta) = \frac{\vec{u} \cdot \vec{v}}{\ \vec{u}\ \ \vec{v}\ }$
u and v are orthogonal:	The projection of u onto v:
立・マ=0	prej(u) = u·V V
The norm of v:	The vector component of u orthogonal to v :
$ \vec{V} = \vec{V} \cdot \vec{V} = \vec{V} \cdot \vec{V} ^2 + \vec{V}_1 ^2 + \vec{V}_2 ^2 + \vec{V}_3 ^2$	$\overline{u} - proj_{v}(\overline{u})$ $= \overline{u} - \frac{\overline{u} \cdot \overline{v}}{\overline{v} \cdot \overline{v}} \overrightarrow{v}$
The unit vector in the direction of v:	The cross product of u and v.
	$ \begin{array}{c} \vec{u} \times \vec{v} \\ = (u_2 v_3 - u_3 v_2) i \\ + (u_3 v_1 - u_1 v_3) j \\ + (u_1 v_2 - u_2 v_1) \vec{K} \end{array} $

The vector equation of a line through l	P
and parallel to <a,b,c>:</a,b,c>	

The standard equation of a plane through P with normal vector <a,b,c>:

$$a(x-x_0)+b(y-y_0)$$

+ $c(z-z_0)=0$

The parametric equations of a line

The cosine of the angle between two planes with normal vectors \mathbf{n}_1 and \mathbf{n}_2 :

through P and parallel to v:

$$X = X_0 + tV_1$$
 $Y = Y_0 + tV_2$
 $Z = Z_0 + tV_3$

$$\cos(\Theta) = \frac{|\vec{n}_1 \cdot \vec{n}_2|}{||\vec{n}_1|| ||\vec{n}_2||}$$

The vector equation of a line through P and O:

The distance between the point Q and a plane through P with normal vector n:

The vector equation of a plane through P with normal vector $\mathbf{n} = \langle \mathbf{a}, \mathbf{b}, \mathbf{c} \rangle$:

The distance between the point Q and a line through P with direction vector u:

$$((\times, \times, \times, \times) - (\times, \times) \times (\times, \times) - (\times, \times) \times (\times, \times) - (\times, \times) \times (\times,$$

The volume of the parallelepiped with vectors u, v, and w as adjacent edges:

$$\vec{u} \cdot (\vec{\nabla} \times \vec{w})$$

$$= \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

 \mathcal{A}

The triple scalar product of u, v, and w:

a150 (xo, yo, Zo)+ t(x,-xo, Y,-Yo, Z,-Zo)

Chapter 12Formulas

Let f(t) be a real valued function of t; $\mathbf{r}(t) = \langle \mathbf{x}(t), \mathbf{y}(t), \mathbf{z}(t) \rangle$ and $\mathbf{u}(t)$ be vector valued functions; $\mathbf{r}(t)$ be the position vector, $\mathbf{v}(t)$ be the velocity, and $\mathbf{a}(t)$ be the acceleration; C be a smooth curve given by $\mathbf{r}(t) = \mathbf{x}(t)\mathbf{i} + \mathbf{y}(t)\mathbf{j} + \mathbf{z}(t)\mathbf{k}$ on the interval (a,b).

Give the formulas for the following:

$\mathbf{r}(t)$ is continuous at the point $t = a$:	$D_{t}\left[\mathbf{r}(\mathbf{f}(t))\right] =$
lim F(t) = F(a) t-ra	f(t) = (f(t))
The derivative of r(t):	If $\mathbf{r}(t) \cdot \mathbf{r}(t) = \text{constant then}$
$\vec{r}'(t) = \lim_{\Delta t \to 0} \frac{\vec{r}(t+\Delta t) - \vec{r}(t)}{\Delta t}$	下・ド=0
$D_{t}[\mathbf{r}(t) + \mathbf{u}(t)] =$	(\$\delta\delta\delta\)
ア化ナル(も)	$\int_{-\infty}^{\infty} \hat{f}(t)dt = \int_{-\infty}^{\infty} \frac{1}{1+((y(t)dt))} dt = \int_{-\infty}^{\infty} \frac{1}{1+((y(t)dt$
$D_t [\mathbf{r}(t) \cdot \mathbf{u}(t)] =$	Velocity: v(t) =
戸。立+戸・む	元 (t)
$D_{t}[\mathbf{r}(t) \times \mathbf{u}(t)] =$	Acceleration: a(t) =
デ×は+デ×び	で(も) = 戸でも)
$D_{t}[f(t)r(t)] =$	Speed =
filifu+ filifil	11 VE) = F(E)

Projectile position function for an initial velocity \mathbf{v}_0 and an initial position \mathbf{r}_0 : $\mathbf{r}(t) = \frac{1}{2} \mathbf{g} + \frac{1}{2} \mathbf{j} + \frac{1}{2} \mathbf{v}_0 + \frac{1}{2} \mathbf{v}_0$	The arc length of C: s = $ \int_{a}^{b} \vec{r}'(t) dt $ $ = \left(\int_{a}^{d} (dx)^{2} + \frac{dy}{dt} \right)^{2} dt $ The arc length of C: s = $ = \int_{a}^{b} \vec{r}'(t) dt $
The unit tangent vector: $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{ \mathbf{r}'(t) }$	The arc length function on C: $s(t) = \int_{a}^{t} \frac{1}{r} (u) du$
Principle unit normal vector: $N(t) = \frac{1}{1 + (t)}$	The curvature for C given by the arc length parameterization $r(s)$: $K = \frac{1}{ T(s) } = \frac{ T'(s) }{ T'(s) }$
Acceleration as a linear combination of T and N: $\vec{a} = a_T \vec{T} + a_N \vec{N}$	The curvature for C given by $r(t)$: $K = \frac{ \vec{r}'(t) }{ \vec{r}'(t) } = \frac{ \vec{r}' \times \vec{r}'' }{ \vec{r}' ^3}$
The tangential component of acceleration: $a_{T} = D_{t} \vec{V}(t) = \frac{\vec{r}' \cdot \vec{r}''}{ \vec{r}' }$ $= \frac{d^{2}s}{dt^{2}}$	Acceleration in terms of speed (ds/dt) and curvature: $\vec{a}(t) = \frac{d^2 s}{dt^2} + K(\frac{ds}{dt})^2 \vec{N}$
The normal or centripetal component of acceleration: $a_N = \frac{1}{\sqrt{\ \vec{r}''\ ^2 - a_{\vec{r}}^2}} = \frac{ \vec{r}' \times \vec{r}'' }{ \vec{r}'' ^2} = \vec{a} \times \vec{r}' $	A vector orthogonal to the unit vector $\mathbf{x}(t)\mathbf{i} + \mathbf{y}(t)\mathbf{j}$: $-\mathbf{y}(t)\mathbf{i} + \mathbf{x}(t)\mathbf{j}$ $-\mathbf{y}(t)\mathbf{i} - \mathbf{x}(t)\mathbf{j}$