M252 Practice Exam 3—Formula Recitation Section

Chapter 10 Formulas

Let P=(x¢,y0,20) and Q=(x1,y1,21) be points in-3-Space; u = <uy,uz,us>, v = <v},vp,v3>,
W = <wj,W2,Ww3>, B = <a,b,c>, m;, and mp be vectors in 3-Space. Vectors are shown in
bold for the questions. Use the arrow notation for vectors in your answers.

Give the formulas for the following:
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The cosine of the angle between u and v:
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u and v are orthogonal: The projection of u onto v:
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The unit vector in the direction of v: The cross product of u and v.
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The vector equation of a line through P

The standard equation of a plane through P

and parallel to <a,b,c>: ' with pormal vector <a,b,c>:
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The parametric equations of a line The cosine of the angle between two planes

through P and parallel to v: with normal vectors m; and m:
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The vector equation of a line through P
and Q:
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The distance-between the point Q and a plane
through P with normal vector n:

[(<x\/\/;;¥’> —<XOIYD)Z°>>°;)>|
KL |

The vector equation of a plane through P
with normal vector n = <a,b,c>:

(x> - o Yo B 7O

The distance between the point Q and a line
through P with direction vector u: N
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The volume of the parallelepiped with
vectors u, v, and w as adjacent edges:
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The ﬁple scalar product of u, v, and w:
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Chapter 11 Formulas

Let f{t) be a real valued function of t; r(t) = <x(t),y(t),z(t)> and u(t) be vector valued
functions; r(t) be the position vector, v(t) be the velocity, and a(t) be the acceleration; C
be a smooth curve given by r(t) = x(1)i + y(t)j + z(t)k on the interval (a,b).

Give the formulas for the following:

r(t) is continuous at the point t = a:
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If r(t) - r(t) = constant then
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Projectile position function for an initial -
velocity v and an initial position ro: r(t) =
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ThearclengthofC s=

f | FeelldE

= ([T

¥

The unit tangent vector: T(t) =

| The arc length function on C: s(t) =
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Prmcxgl:t unit normal vector: N(t) = The curvature for C given by the arc length
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parameterization r(s): K =
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Acceleration as a linear combination of T
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The tangential component of acceleration:
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Acceleratlon in terms of speed (ds/dt) and

curvature: T+ K( )
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A vector orthogonal to the unit vector
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