Chapter 10 Formulas

Let $P=(x_0,y_0,z_0)$ and $Q=(x_1,y_1,z_1)$ be points in-3-Space; $u=\langle u_1,u_2,u_3\rangle$, $v=\langle v_1,v_2,v_3\rangle$, $w=\langle w_1,w_2,w_3\rangle$, $n=\langle a,b,c\rangle$, n_1 , and n_2 be vectors in 3-Space. Vectors are shown in bold for the questions. Use the arrow notation for vectors in your answers.

Give the formulas for the following:

Give the formulas for the following:	
The dot product of u and v: $\overrightarrow{U} - \overrightarrow{V} = U_1 V_1 + U_2 V_2 + U_3 V_3$	The cosine of the angle between \mathbf{u} and \mathbf{v} : $cos(\Theta) = \frac{\vec{u} \cdot \vec{v}}{ \vec{u} \vec{v} }$
u and v are orthogonal: $\vec{u} \cdot \vec{v} = 0$	The projection of \mathbf{u} onto \mathbf{v} : $P(\mathbf{u}) = \frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}$
The norm of v:	The vector component of u orthogonal to v :
$ \vec{V} = \vec{V} \cdot \vec{V} = \vec{V} \cdot \vec{V} ^2 + \vec{V}_1 ^2 + \vec{V}_2 ^2 + \vec{V}_3 ^2$	$\overline{u} - proj_{\sqrt{u}}$ $= \overline{u} - \frac{\overline{u} \cdot \overline{v}}{\overline{v} \cdot \overline{v}} \overrightarrow{v}$
The unit vector in the direction of v:	The cross product of \mathbf{u} and \mathbf{v} . $ \overrightarrow{u} \times \overrightarrow{V} $ $ = (u_2 v_3 - u_3 v_2) i $ $ + (u_3 v_1 - u_1 v_3) j $ $ + (u_1 v_2 - u_2 v_1) K $

The vector equation of a line through P and parallel to <a.b.c>:

The standard equation of a plane through P with normal vector <a.b.c>:

The parametric equations of a line through P and parallel to v:

$$X=X_0+at$$

 $Y=Y_0+bt$
 $Z=Z_0+ct$

The cosine of the angle between two planes with normal vectors **n**₁ and **n**₂:

$$\cos(\mathbf{e}) = \frac{|\vec{n}_1 \cdot \vec{n}_2|}{|\vec{n}_1| ||\vec{n}_2||}$$

The vector equation of a line through P and O:

REVISED

7:59 am. 3/12/06 The distance between the point Q and a plane

through P with normal vector
$$\mathbf{n}$$
:
$$\frac{\left|\left(\left\langle \times, \right\rangle, \left\langle \times, \right\rangle, \left\langle \times, \right\rangle, \left\langle \times, \right\rangle, \left\langle \times, \right\rangle\right) - \vec{n}\right|}{\left|\left(\left\langle \times, \right\rangle, \left\langle \times, \right\rangle, \left\langle \times, \right\rangle\right) - \vec{n}\right|}$$

The vector equation of a plane through P with normal vector $\mathbf{n} = \langle \mathbf{a}, \mathbf{b}, \mathbf{c} \rangle$:

The distance between the point O and a line through P with direction vector u:

The volume of the parallelepiped with vectors u, v, and w as adjacent edges: て·(グ×び)

$$= \left| \begin{array}{c} u_1 \ u_2 \ u_3 \\ v_1 \ v_2 \ v_3 \\ \omega_1 \ \omega_2 \ \omega_3 \end{array} \right|$$

The triple scalar product of u, v, and w:

Chapter 11 Formulas

Let f(t) be a real valued function of t; $r(t) = \langle x(t), y(t), z(t) \rangle$ and u(t) be vector valued functions; r(t) be the position vector, v(t) be the velocity, and a(t) be the acceleration; C be a smooth curve given by $r(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$ on the interval (a,b).

Give the formulas for the following:

$\mathbf{r}(\mathbf{t})$ is continuous at the point $\mathbf{t} = \mathbf{a}$:	$D_t [r(f(t))] =$
lim F(t) = F(a) t-a	f(t) F'(f(t))
The derivative of $r(t)$: $\frac{1}{1} = \lim_{\Delta t \to 0} \frac{1}{1} \frac{1}$	If $\mathbf{r}(t) \cdot \mathbf{r}(t) = \text{constant then}$ $\mathbf{r}' = \mathbf{r}' = \mathbf{r}$ REVISED 8:01 am, 3/12/06
D _t [r(t) + u(t)] =	$ \int_{\hat{r}(t)dt} \hat{r} = \left(\int_{\hat{r}(t)dt} \hat{r} + \left(\int_{\hat{r}(t)dt} \hat{r} \right) \hat{r} + \left(\int_{\hat{r}(t)dt} \hat{r} \hat{k} \right) \hat{k} $
D _t [r(t)·u(t)] =	Velocity: v(t) =
$D_{t}[\mathbf{r}(t) \times \mathbf{u}(t)] = \mathbf{r}' \times \mathbf{u}' + \mathbf{r}' \times \mathbf{u}'$	Acceleration: $\mathbf{a}(t) = \overrightarrow{\nabla}(t) = \overrightarrow{\Gamma}''(t)$
D. [f(t)r(t)] = f(t) F(t) + f(t) F(t)	Speed = \(\tau(\pi) = \(\varphi'(\pi) \)

Projectile position function for an initial velocity
$$v_0$$
 and an initial position r_0 : $r(t) = \frac{1}{2}gt^2\int_0^1 + t\sqrt{s} + \frac{1}{2}s$

The arc length of C: s =
$$\int_{a}^{b} || \vec{r}'(t)|| dt$$

$$= \left(\int_{a}^{d} (\frac{x}{dt})^{2} + \frac{dy}{dt} \right)^{2} + \frac{dz}{dt} = 0$$

The unit tangent vector:
$$T(t) =$$

The arc length function on C:
$$s(t) =$$

8:28 am. 3/12/06

Principle unit normal vector:
$$N(t) =$$

The curvature for C given by the arc length parameterization r(s): K =

Acceleration as a linear combination of T and N:

$$\vec{a} = a_{r} \vec{T} + a_{H} \vec{N}$$

The curvature for C given by r(t): K =

$$\frac{11\vec{r}(t)}{1|\vec{r}'(t)|} = \frac{1|\vec{r}' \times \vec{r}''|}{1|\vec{r}''(t)|}$$

8:02 am. 3/12/06

The tangential component of acceleration:

Acceleration in terms of speed (ds/dt) and

curvature:
$$\frac{d^2s}{dt^2} + K(\frac{ds}{dt})^2 \vec{N}$$

The normal or centripetal component of

acceleration:
$$a_N = \sqrt{\|\vec{r}''\|^2 - q_{\vec{\tau}}^2}$$

$$= \frac{\|\vec{r}' \times \vec{r}''\|}{\|\vec{r}''\|^2} = \frac{\|\vec{a} \times \vec{r}\|}{\|\vec{a} \times \vec{r}\|}$$

A vector orthogonal to the unit vector x(t)i + y(t)j: