M252 Practice Exam 3—Formula Recitation Section

Chapter 10 Formulas

Let $P=(x_0,y_0,z_0)$ and $Q=(x_1,y_1,z_1)$ be points in 3-Space; $\mathbf{u} = \langle \mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\rangle$, $\mathbf{v} = \langle \mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\rangle$, $\mathbf{w} = \langle \mathbf{w}_1,\mathbf{w}_2,\mathbf{w}_3\rangle$, $\mathbf{n} = \langle \mathbf{a},\mathbf{b},\mathbf{c}\rangle$, \mathbf{n}_1 , and \mathbf{n}_2 be vectors in 3-Space. Vectors are shown in bold for the questions. Use the arrow notation for vectors in your answers.

Give	the	formul	las for	• the	foll	owing:
0110	unc	ronnu	ius iui	unc	TOIL	owing.

The local state of the following.	
The dot product of u and v :	The cosine of the angle between u and v :
u and v are orthogonal:	The projection of u onto v :
The norm of v :	The vector component of u orthogonal to v :
The unit vector in the direction of v :	The cross product of u and v .
The unit vector in the direction of v :	The cross product of u and v .
The unit vector in the direction of v :	The cross product of u and v .
The unit vector in the direction of v :	The cross product of u and v .
The unit vector in the direction of v :	The cross product of u and v .

The vector equation of a line through P	The standard equation of a plane through P
and parallel to <a,b,c>:</a,b,c>	with normal vector <a,b,c>:</a,b,c>
The parametric equations of a line	The cosine of the angle between two planes
through P and parallel to v :	with normal vectors \mathbf{n}_1 and \mathbf{n}_2 :
The vector equation of a line through P and Q:	The distance between the point Q and a plane through P with normal vector n :
The vector equation of a plane through P	The distance between the point Q and a line
with normal vector n = <a,b,c>:</a,b,c>	through P with direction vector u :
The volume of the parallelepiped with vectors u , v , and w as adjacent edges:	The triple scalar product of u , v , and w :

Chapter 11 Formulas

Let f(t) be a real valued function of t; $\mathbf{r}(t) = \langle \mathbf{x}(t), \mathbf{y}(t), \mathbf{z}(t) \rangle$ and $\mathbf{u}(t)$ be vector valued functions; $\mathbf{r}(t)$ be the position vector, $\mathbf{v}(t)$ be the velocity, and $\mathbf{a}(t)$ be the acceleration; C be a smooth curve given by $\mathbf{r}(t) = \mathbf{x}(t)\mathbf{i} + \mathbf{y}(t)\mathbf{j} + \mathbf{z}(t)\mathbf{k}$ on the interval (a,b).

Give the formulas for the following:

$\mathbf{r}(t)$ is continuous at the point $t = a$:	$D_t [\mathbf{r}(f(t))] =$
The derivative of $\mathbf{r}(t)$:	If $\mathbf{r}(t) \cdot \mathbf{r}(t) = \text{constant then}$
$\mathbf{D}_{\mathrm{t}}\left[\mathbf{r}(\mathrm{t}) + \mathbf{u}(\mathrm{t})\right] =$	$\int \vec{r}(t)dt =$
$D_t \left[\mathbf{r}(t) \cdot \mathbf{u}(t) \right] =$	Velocity: $\mathbf{v}(t) =$
$D_t \left[\mathbf{r}(t) \times \mathbf{u}(t) \right] =$	Acceleration: $\mathbf{a}(t) =$
$D_t [f(t)\mathbf{r}(t)] =$	Speed =
	Speed –

Projectile position function for an initial velocity \mathbf{v}_0 and an initial position \mathbf{r}_0 : $\mathbf{r}(t) =$	The arc length of C: s =
The unit tangent vector: T (t) =	The arc length function on C: s(t) =
Principle unit normal vector: N (t) =	The curvature for C given by the arc length parameterization r (s): K =
Acceleration as a linear combination of T and N :	The curvature for C given by $\mathbf{r}(t)$: K =
The tangential component of acceleration: a _{T =}	Acceleration in terms of speed (ds/dt) and curvature:
The normal or centripetal component of acceleration: a _N =	A vector orthogonal to the unit vector $x(t)\mathbf{i} + y(t)\mathbf{j}$: