M251 Practice Exam Questions Larson 8th Ed Sections 7.1-7.3

1. Find the area of the region bounded by the equations by integrating (i) with respect to x and (ii) with respect to y.

$$
\begin{aligned}
& x=81-y^{2} \\
& x=y-9
\end{aligned}
$$

2. Find the area of the region bounded by equations by integrating (i) with respect to x and (ii) with respect to y.

$$
\begin{aligned}
& y=x^{2} \\
& y=90-x
\end{aligned}
$$

3. Find the area of the region bounded by the graphs of the algebraic functions.

$$
\begin{aligned}
& f(x)=x^{2}-4 x \\
& g(x)=0
\end{aligned}
$$

4. Find the area of the region bounded by the graphs of the algebraic functions.
$f(x)=x^{2}+30 x+225$
$g(x)=17(x+15)$
5. Find the area of the region bounded by the graphs of the algebraic functions.

$$
\begin{aligned}
& f(x)=\sqrt[3]{x-12} \\
& g(x)=x-12
\end{aligned}
$$

6. Find the area of the region bounded by the graphs of the algebraic functions.

$$
f(y)=y^{2}+9, \quad g(y)=0, \quad y=-9, \quad y=10
$$

7. Find the area of the region bounded by the graphs of the equations.

$$
f(x)=\frac{12 x}{x^{2}+1}, \quad y=0, \quad 0 \leq x \leq 6
$$

8. Find the area of the region bounded by the graphs of the equations.

$$
f(x)=\sin (x), \quad g(x)=\cos (2 x), \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{6}
$$

9. Find the area of the region bounded by the graphs of the equations.

$$
f(x)=x e^{-x^{2}}, \quad y=0, \quad 0 \leq x \leq 1
$$

10. Set up and evaluate the integral that gives the volume of the solid formed by revolving the region about the x-axis.

$$
y=8, y=16-\frac{x^{2}}{16}
$$

11. Set up and evaluate the integral that gives the volume of the solid formed by revolving the region about the y-axis.
$y=x^{4}, y=16$ in the first quadrant
12. Set up and evaluate the integral that gives the volume of the solid formed by revolving the region about the y-axis.
$y=x^{\frac{10}{11}}, y=1, x=0$
13. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the given lines.
$y=x^{2}, y=14 x-x^{2}$
(i) x-axis; (ii) the line $y=51$
14. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the given lines.
$x=y^{2}, x=14 y-y^{2}$
(i) y-axis; (ii) the line $x=51$
15. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the given lines.
$y=4-1 x-x^{2}, y=x+4$
(i) x-axis; (ii) the line $y=2$
16. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the line $y=12$.
$y=x, y=11, x=0$
17. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the line $y=8$.
$y=\frac{1}{2} x^{4}, y=8, x=0$
18. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the line $y=7$.
$y=\sin x, y=0,0 \leq x \leq \frac{\pi}{2}$
19. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the x-axis.

$$
y=\frac{1}{\sqrt{x+13}}, y=0, x=0, x=10
$$

20. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the x-axis.
$y=\frac{1}{x}, y=0, x=6, x=7$
21. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the x-axis. Verify your results using the integration capabilities of a graphing utility.
$y=\sin (x), y=0, x=0, x=\frac{\pi}{3}$
22. Use the shell method to set up and evaluate the integral that gives the volume of the solid generated by revolving the plane region about the y-axis.
$y=4 x-x^{2}, x=0, y=4$
23. Use the shell method to set up and evaluate an integral that gives the volume of the solid generated by revolving the plane region about the y-axis.

$$
y=9-x^{2}, y=0
$$

24. Use the shell method to set up and evaluate the integral that gives the volume of the solid generated by revolving the plane region about the x-axis.
$y=8-x, y=0, x=0$
25. Use the shell method to set up and evaluate the integral that gives the volume of the solid generated by revolving the plane region about the x-axis.
$y=x, y=0, x=4$
26. Use the shell method to set up and evaluate the integral that gives the volume of the solid generated by revolving the plane region about the x-axis.
$y=x^{6}, x=0, y=64$
27. Use the shell method to find the volume of the solid generated by revolving the plane region about the line $x=24$.
$y=\sqrt[4]{x}, y=0, x=16$
28. Use the disk or shell method to find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the given line.
$y=x^{3}, y=0, x=2$
(i) the x-axis; (ii) the y-axis; (iii) the line $x=4$
29. Use the disk or shell method to find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the given line.
$y=\frac{16}{x^{2}}, y=0, x=1, x=8$
(i) the x-axis; (ii) the y-axis; (iii) the line $y=16$
30. Use the disk or shell method to find the volume of the solid generated by revolving the region bounded by the graph of the equation about the given line.
$x^{\frac{2}{3}}+y^{\frac{2}{3}}=12^{\frac{2}{3}}$
(i) the x-axis; (ii) the y-axis
