THEOREM 9.8 Arc Length in Parametric Form

If a smooth curve C is given by x = f(t) and y = g(t) such that C does not intersect itself on the interval $a \le t \le b$ (except possibly at the endpoints), then the arc length of C over the interval is given by

$$s = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt = \int_{a}^{b} \sqrt{[f'(t)]^{2} + [g'(t)]^{2}} dt.$$

THEOREM 9.9 Area of a Surface of Revolution

If a smooth curve C given by x = f(t) and y = g(t) does not cross itself on an interval $a \le t \le b$, then the area S of the surface of revolution formed by revolving C about the coordinate axes is given by the following.

1.
$$S = 2\pi \int_a^b g(t) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

Revolution about the *x*-axis: $g(t) \ge 0$

2.
$$S = 2\pi \int_a^b f(t) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

Revolution about the y-axis: $f(t) \ge 0$

THEOREM 9.11 Slope in Polar Form

If f is a differentiable function of θ , then the slope of the tangent line to the graph of $r = f(\theta)$ at the point (r, θ) is

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{f(\theta)\cos\theta + f'(\theta)\sin\theta}{-f(\theta)\sin\theta + f'(\theta)\cos\theta}$$

provided that $dx/d\theta \neq 0$ at (r, θ) . (See Figure 9.44.)

THEOREM 9.12 Tangent Lines at the Pole

If $f(\alpha) = 0$ and $f'(\alpha) \neq 0$, then the line $\theta = \alpha$ is tangent at the pole to the graph of $r = f(\theta)$.

THEOREM 9.13 Area in Polar Coordinates

If f is continuous and nonnegative on the interval $[\alpha, \beta]$, $0 < \beta - \alpha \le 2\pi$, then the area of the region bounded by the graph of $r = f(\theta)$ between the radial lines $\theta = \alpha$ and $\theta = \beta$ is given by

THEOREM 9.14 Arc Length of a Polar Curve

Let f be a function whose derivative is continuous on an interval $\alpha \le \theta \le \beta$. The length of the graph of $r = f(\theta)$ from $\theta = \alpha$ to $\theta = \beta$ is

$$s = \int_{\alpha}^{\beta} \sqrt{[f(\theta)]^2 + [f'(\theta)]^2} d\theta = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta.$$

THEOREM 9.15 Area of a Surface of Revolution

Let f be a function whose derivative is continuous on an interval $\alpha \leq \theta \leq \beta$. The area of the surface formed by revolving the graph of $r = f(\theta)$ from $\theta = \alpha$ to $\theta = \beta$ about the indicated line is as follows.

1.
$$S = 2\pi \int_{\alpha}^{\beta} f(\theta) \sin \theta \sqrt{[f(\theta)]^2 + [f'(\theta)]^2} d\theta$$
 About the polar axis

2.
$$S = 2\pi \int_{\alpha}^{\beta} f(\theta) \cos \theta \sqrt{[f(\theta)]^2 + [f'(\theta)]^2} d\theta$$
 About the line $\theta = \frac{\pi}{2}$

$Limaçons$ $r = a \pm b \cos \theta$ $r = a \pm b \sin \theta$ $(a > 0, b > 0)$	π 3π 0	π $\frac{\pi}{2}$ 3π	$\frac{\pi}{2}$ π 3π	π $\frac{\pi}{2}$ 3π
	$\frac{\frac{3\pi}{2}}{b} < 1$ Limaçon with inner loop	$\frac{a}{b} = 1$ Cardioid (heart-shaped)	$\frac{3\pi}{2}$ $1 < \frac{a}{b} < 2$ Dimpled limaçon	$\frac{\frac{3\pi}{2}}{b} \ge 2$ Convex limaçon
Rose Curves n petals if n is odd 2n petals if n is even $(n \ge 2)$	$\pi = 3$ $\pi = 3$ a a	$\pi = 4$ $\pi = 4$ $3\pi = 4$	$ \frac{\pi}{2} $ $ \pi $ $ n = 5 $	$\pi \xrightarrow{\frac{\pi}{2}} 0$ $n = 2$
	$r = a \cos n\theta$ Rose curve	$r = a \cos n\theta$ Rose curve	$r = a \sin n\theta$ Rose curve	$r = a \sin n\theta$ Rose curve
Circles and Lemniscates	$\pi \xrightarrow{\frac{\pi}{2}} 0$ $\frac{3\pi}{2}$	$\pi \xrightarrow{\frac{\pi}{2}} a$ $\frac{3\pi}{2}$	$\pi \xrightarrow{\frac{\pi}{2}} 0$ $\frac{3\pi}{2}$	$\pi = \underbrace{\frac{\pi}{2}}_{a}$ $\frac{3\pi}{2}$
/	$r = a \cos \theta$ Circle	$r = a \sin \theta$ Circle	$r^2 = a^2 \sin 2\theta$ Lemniscate	$r^2 = a^2 \cos 2\theta$ Lemniscate