I. Pre-Calculus Review: Sigma Notation

In Pre-Calculus, you study sequences and series. Recall that a series is just the sum of a sequence. The Greek letter sigma is used to denote "sum".
-example- Evaluate each sum.
a. $\sum_{i=1}^{5} 2 i$
b. $\sum_{n=1}^{4} \frac{(-1)^{n+1} n}{n+1}$
c. $\sum_{k=0}^{3}(k+1) x^{k}$

Given a sum, we can write it in sigma notation if we can recognize a pattern.

-example- Write each sum using sigma notation.
a. $\frac{3}{1+1}+\frac{4}{1+2}+\frac{5}{1+3}+\ldots+\frac{12}{1+10}$
b. $\left(\frac{1}{2}\right)\left(1+\frac{1}{4}\right)^{2}+\left(\frac{1}{2}\right)\left(1+\frac{2}{4}\right)^{2}+\left(\frac{1}{2}\right)\left(1+\frac{3}{4}\right)^{2}+\left(\frac{1}{2}\right)\left(1+\frac{4}{4}\right)^{2}$

II. Area

Consider this problem: Find the area of the region enclosed by the parabola, $y=1+x^{2}$, the vertical lines $x=1$ and $x=3$, and the x-axis.

Picture:

Strategy: Since we know how to find the area of a RECTANGLE, we will divide the region into rectangular strips, and add the area.

Estimate 1: Use 4 left endpoint rectangles to approximate the area.

Sigma Notation:
Estimate 2: Use 4 right endpoint rectangles to approximate the area.

Sigma Notation:

