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Calculus students are well aware of an important use of the function sin 
The common and perhaps the easiest approach to finding the derivatives of the
trigonometric functions hinges on the result 

(1)

However, few students realize that this function plays a key role in many areas of
mathematics and its applications. In this paper, we briefly describe several of these roles
after first presenting some elementary examples in which sin arises geometrically.
These examples are accessible to calculus students and may help motivate interest in and
draw attention to this function. In addition, they provide some unusual proofs of the
limit (1).

Properties of sin 

In certain fields, such as signal analysis, the function sin is often called the “sinc
function.” Thus, let us set

By defining sinc the function is extended to an analytic function on the real line.
We shall refer to this extension also by the name sinc. The graph of sinc is shown in
Figure 1, where we note that it is an even function with roots at for 

that for all and that lim sinc x 5 0.x→ ±`
x Þ 0,|sinc x| < 1±2, . . .,

n 5 ±1,np,

0 5 1,

sinc x 5
sin x

x
.

xyx

x/x

xyx

lim 
x→0

sin x
x

5 1.

xyx.

C3

sin x
x



Figure 1

The sinc function has a rapidly convergent power series representation,

and even an infinite product representation [7],

Also,

although this integral is not absolutely convergent. However, the square of sinc is
integrable on the real line with 

All things considered, sinc is a rather nice, well-behaved function. Properties of sinc are
presented in [4, sections 39–41] and [2, pages 62–63].

Examples from Geometry
In this section we present a few simple examples from geometry involving sin . 
In the process,some nonroutine proofs of the limit (1) will fall out.

Ar ea of a Circle. In a circle of radius 1,inscribe a polygon composed of n isosceles
triangles with vertex angle and one isosceles triangle with vertex angle where

(Figure 2). Note that and that lim The area
of an isosceles triangle with unit sides and vertex angle is sin . It followsus1y2du
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Figure 2

that the area of the polygon is

Hence, a proof of (1) follows from

Further, the perimeter of the polygon is 

As approaches zero, the perimeter approaches , giving us another verif ication of the
limit (1).

It is interesting to note that some early attempts to measure were based on measuring
the perimeter of a regular polygon inscribed in a circle. For a regular polygon with n
sides, and From the last formula, the perimeter is sinc
Thus,the early mathematicians were actually using sinc as an approximation 
of .

Centroid of a sector. The centroid, or center of gravity, of a plane region is the point
at which a fulcrum should be placed so that the region balances. Consider a circular
sector having radius 1 and central angle 2 , drawn in Figure 3 so that the vertical axis isa
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the angle bisector. The centroid of the circular sector lies on this vertical axis. The
moment about the horizontal axis through the vertex is given by

Figure 3

Since the area of the sector is , the distance to the centroid from the vertex is

We can now give a physical argument to justify the limit (1). Suppose two triangles are
drawn as illustrated in Figure 4. The centroid of an isosceles triangle is on its altitude

of the way from the vertex. Therefore, the centroid of the larger triangle is units
above the vertex, and the centroid of the smaller triangle is cos units above the
vertex. Since the centroid of the sector must lie between those of the triangles,we have

Figure 4
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Thus,allowing to approach zero gives the result (1).

Another example involving sinc and centroids appears in the recent paper of Lo Bello
[10]. Consider an n-sided pyramid whose base is a regular n-sided polygon inscribed in
a circle of radius r and whose peak is at a height h above the center of the circle. As
shown by Lo Bello [10, p. 169],the volume of this pyramid and the moment about its
base are

and

Note that as n approaches infinity, the formulas become those for the cone.

Buffon’s needle problem. In Buffon’s needle problem,a needle L units long is thrown
at random onto a plane ruled with horizontal parallel lines d units apart (Figure 5).
Assume and let be a fixed angle such that We seek the
probability that the needle crosses a line, given that it lies within an angle of the
vertical. In the usual case of Buffon’s needle problem,

Figure 5

Let C be the event the needle crosses a line, and let A be the event the needle lies
within an angle of the vertical. If y is the distance of the southernmost point of the
needle from the line immediately above, and is the angle the needle makes with the
vertical, then in order for the event to occur we must have both 

Thus,

But, the probability of the event is 2 Hence, the conditional probability of the
event C, given that the event occurs, is
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If then the probability that the needle crosses a line, given that it lies within an
angle of the vertical, is simply sinc As approaches 0,this probability must
approach 1. Thus,we have a probabilistic interpretation of the limit (1). For this
argument to be a proof, however, one must evaluate the integral above without implicitly
using the limit (1). The article by Cipra [5] indicates a way of finding cos without
knowing the limit.

Expressions for 

The sinc function has played a role in the search for analytical expressions for the
universal constant . The recent article by Castellanos [3] gives a fascinating review of
the quest. One of the first expressions for , due to Francois Vieta in 1593,can be
obtained by observing that

and so,for arbitrary n,

Using the limit (1),we get 

which is known as Euler’s formula. Now, we take and use the half-angle
formula for cosine to obtain the expression

This is the result due to Vieta [3, p. 69]. Evaluating this expression would be a good
calculator exercise, but unfortunately the convergence is very slow.

The following formula for also was obtained by Euler:

To get this result,Euler equated the coefficient of in the power series for sinc,

to the coefficient of in the product expansion

Euler obtained yet another formula for in this way by equating coefficients of the
fourth powers of x in these expansions [3, p. 75].
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Some Roles of sin 

We mention now a few of the classical ways in which sinc occurs in mathematics and its
applications. This survey, together with the references,will provide the reader with
direction for further study.

Fourier analysis. The sinc function appears frequently in Fourier analysis,a major
technique in the solution of differential equations and in other applications of
mathematics. For a periodic function f that has period and satisfies other reasonable
conditions [4, page 90],Fourier analysis allows us to expand the function in a
trigonometric series of the form

(2)

where the and the  are constants that can be determined.

A function on the real line that is nonperiodic cannot be expressed as a
trigonometric series. However, the Fourier integral formula gives an expression for such
a function involving integrals of sines and cosines (rather than sums) that converges to
the function at points of continuity. To derive the Fourier integral formula,we first need
the following result,which can be found in [6, p. 78]; If f is afunction on the real line
that is continuous at the point x and satisfies certain other reasonable conditions,then
for any positive number a,

(3)

This result leads immediately to the Fourier integral theorem as follows. First note that 

We can then write

Changing the order of integration and extending the integration with respect to t from
to [6, p. 78],we get

which is the Fourier integral formula. This derivation follows [6]; see also [4] and [1],
particularly for proofs of (3). The Fourier integral formula can also be written in
exponential form [1]:
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This last integral is called the Fourier transform of f.

From formula (3) we see that the sinc function lies at the core of the Fourier integral
formula. However, sinc appears in other ways in Fourier analysis. A noteworthy example
is its role in smoothing Fourier series to improve convergence and treat Gibbs’
phenomenon. Gibbs’ phenomenon is the tendency of a truncated Fourier series to
display oscillations near points of discontinuity. Smoothing or averaging is done to
reduce this effect. To smooth a Fourier series truncated to n terms,we simply multiply
the k th term by the factor sinc [9, pages 530-538].

As noted by Courant and Hilbert [6, p. 78],the property of sinc expressed in formula (3)
was discovered by Dirichlet, and this formula is often used as the foundation of the
theory of Fourier series. In certain fields where Fourier methods are fundamental,such
as image processing, sinc is appropriately known as the Dirichlet function.

Spectral theory. The appearance of sinc in Fourier analysis explains its occurrence in
areas of engineering that rely on the analysis of signals,such as communication theory
and acoustics. Mathematically, a signal is simply a function of time. In practice, a signal
may actually be a voltage or current,which in turn represents another physical quantity
such as sound energy. For a periodic signal f with Fourier series (2),we can view the
signal as “decomposed”into periodic functions with discrete frequencies 0,1, 2, . . .,
and “amplitudes”given by the absolute values of the coefficients For a
nonperiodic signal f on the real line we must allow every frequency . In the Fourier
integral representation

we can view f as decomposed into a continuous“spectrum” of periodic functions of x,
for the various frequencies The analogue of the amplitudes in (2) is 

the absolute value of the Fourier transform. One can interpret asan “index of the
relative amplitudes of the components of the frequency spectrum of f ” [11, p. 181]. In
fact, called the power spectrum of f at [2], [9], measures the intensity of the
component with frequency 

A fundamental signal is the rectangular pulse which has the form

for positive constants Sand h. The integral over time of a force acting on a system is a
measure of the strength of the force. Hence, this rectangular pulse represents a force of
strength Sapplied for a time 2h. The Fourier transform of is 
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that for any given frequency as the component of the signal with frequency 
becomes stronger. In fact,the smaller the duration h, the larger the range of the
frequencies with nearly the same strength S. In acoustics,a pulse of high strength and
small duration can be realized, for example, when two hard spheres collide at a high
speed. In this case, all the frequencies in the audible range would be represented with
nearly uniform strength and a sharp click is heard.

Perhaps the most celebrated result in communication theory is Shannon’s sampling
theorem. A function is said to be band limited with band width if its Fourier
transform vanishes outside the interval Band limited functions are
common as many devices effectively transmit only a certain range of frequencies.
Shannon’s theorem states that for a band limited function f,

Proofs can be found in Hamming [9, page 557] and Rosie [13, page 53]. This
remarkable result states that by sampling a band limited function only at the discrete set 

of points we can reconstruct the entire function. Further, as 

Rosie states [13, p. 56],the function is “reconstituted by erecting at each sampling point
a sin function of magnitude equal to the sampled value at that point.”

Further reading about the roles of sinc in the field of signal analysis appear in [2], [11],
[12], and [13].

Approximation theory and numerical analysis. Long before the sampling theorem
of Shannon appeared, E. T. Whittaker [15] noticed many important properties of the sinc
function,and saw its role in the approximation of functions. Suppose the values of a
function f on the real line are given at a discrete set of points,nh, for

Then f can be interpolated at these points by the function

wherever the series converges. Since the roots of sinc are the nonzero multiplies of ,
and sinc , the functionC takes on the same values as f at the points nh,

. The function C is called the Whittaker cardinal function for f, or the “sinc
function” expansion of f. From Shannon’s sampling theorem,we see that Whittaker’s
cardinal function will reproduce a band limited function when the spacing between data
points is The function C has been used in applications to the transmission
of information [14, p. 166]. Moreover, Stenger [14], in an excellent article, analyzes
many significant applications of the Whittaker cardinal function throughout numerical
analysis,including the areas of interpolation theory, numerical integration, and solution
of differential and integral equations. As Stenger notes,E. T. Whittaker used C to obtain
alternate expressions of entire functions,and called it “a function of royal blood in the
family of entire functions,whose distinguished properties separate it from its bourgeois
brethren.”

Conclusion. We have spent some time studying sin and its several roles in
mathematics and applications. The results of the previous section hint that, in some
sense, it is a basic building block for a large class of functions. There are other
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occurrences of sinc that we could have discussed. In mechanics and quantum physics,it
arises in the solution of the wave equation [8, section 16.3]. In probability theory, sinc is
the characteristic function of the uniform random variable on 

We hope this article will stimulate readers to think about the prevalence of the sinc
function. When we introduce sin in the calculus course, preparing to find the
derivatives of sin x and cos x, we might point out that this function is significant in its
own right, and that its use in calculus is not just an isolated occurrence. Many of our
calculus students are engineering and science majors,and are likely to see this function
again. 
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