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Iculus students are well aware of an important use of the functiayixsin
The common and perhaps the easiest approach to finding the derivatives of the
trigonometric functions hinges on the result

lim=——= = 1. (1)

However, few students realize that this function plays a key role in many areas of
mathematics and its applications. In this paper, we briefly describe several of these roles
after first presenting some elementary examples in whick/sin arises geometrically.
These examples are accessible to calculus students and may help motivate interest in and
draw attention to this function. In addition, they provide some unusual proofs of the

limit (1).

Properties of sinx/x

In certain fields, such as signal analysis, the functioxsin is often called the “sinc
function.” Thus, let us set
. sin x
sincx = ——.
X
By defining sindd = 1, the function is extended to an analytic function on the real line.
We shall refer to this extension also by the name sinc. The graph of sinc is shown in

Figure 1, where we note that it is an even function with roatsrat n fort1,
+2, ... that|sincx| < 1 forallx # 0, and thatlij_,__ sing = 0.
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Figure 1

The sinc function has apidly corvergent paver seres iepresentéon,
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and @en an ininite product epresentéon [7],

o 2
sincx = H(l— X )
1
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Also,

(o] -
f sinc x dx = ,
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although this intgral is not &solutey corvergent. Havever, the squag of sinc is
integrable on the eal line with

f_OOOOSiI’ICZXdX = .

All things considegd sinc is a ather nice well-behaed function. Ropeties of sinc a
presented in4, sections 39-41] an@[pages 62—-63].

Examples fom Geomety

In this section w present adw simple &amples fom geomety involving sinx/x.
In the ppcesssome norwutine poofs of the limit (1) will &ll out.

Area of a Circle. In a circle of radius 1,nscribe a poygon composed af isosceles
triangles with ertex anglea and one isoscelesdangle with \ertex angle where
0 < B < a < w(Figure 2). Note the = 27 — na and thalim,_,.8 = 0. The aea
of an isoscelesittngle with unit sides ancewtex angled is (1/2)sin 6. It follows



Figure 2

tha the aea of the paglgon is
Ala) = n%sina + %sin,B
_ 2 — (31

—sin+lsin~
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Hence a poof of (1) fllows from

2
Further, the peimeter of the paglgon is

P(a) = n(2 sin%) +25ind - (Z’Tf;ﬁxz sm%) +2sinb

. 2 . .
7= limA(a) = limsinca + O.
a-0" a0

= (27 — B)sinc% + Zsing.
As «a approades zr0, the peimeter gproades2, giving us anotheretrification of the

limit (1).

It is interesting to note thasome edy attempts to measarr were based on measnog
the peimeter of a egular poygon inscibed in a cicle. For a egular poygon withn
sides,a = 27/n, andB = 0. From the lastdrmula, the peimeter is2# sind7/n).
Thus,the ealy mahemdicians were actualy using sind7r/n) as an pproximation
of .

Centroid of a sector The centoid, or center of gavity, of a plane &gion is the point
at which a fulcum should be placed so ththe egion balances. Consider aaitar
sector haing radius 1 and cerdl angle 2, drawn in Hgure 3 so thathe \ertical axis is



the angle bisectomhe centoid of the cicular sector lies on thisettical axis.The
moment &out the haeontal axis though the ertex is gven by

fgna (Lﬂydy> dx = %sin a.
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Figure 3

Since the ara of the sector ig, the distance to the centd from the ertex is

/3 sna = 2sinc a.
a 3

We can nw give a plysical agument to justify the limit (1). Supposedvriangles ag
drawn as illusteted in kgure 4.The centoid of an isoscelesiangle is on its altitude
2/3 of the way from the ertex. Therefore, the centoid of the lager tiangle is2/3 units
above the \ertex, and the centid of the smaller tangle is(2/3)cosa units @ove the
vertex. Since the centid of the sector mrst lie betveen those of theiémgles,we hae

y:

2cos <Zsinc < =
3 CY_3 CY_3.

Figure 4



Thus,allowing « to gproat zero gves the esult (1).

Another kample ivolving sinc and centids gpeas in the ecent pper of Lo Bello
[10]. Consider am-sided yramid whose base is &gularn-sided poygon inscibed in
a circle of radiusr and whose peak ista heighth above the center of the de. As
shavn by Lo Bello [10, p. 169],the wlume of this gramid and the momenbaut its
base a&

L gne 2T Lo 2T
V = Bwr h sinc n and Mxy— 127Tr h?sinc N

Note tha asn approadies infnity, the formulas become thoseifthe cone

Buffon’s needle poblem. In Buffon’s needle mblem, a needld. units long is thown
at random onto a planailed with hoizontal paallel linesd units gatt (Figure 5).
Assumel < d and leta be a ixed angle suttha 0 < a < 7/2. We seek the
probability that the needle asses a linggiven tha it lies within an anglex of the
vetrtical. (In the usual case of Bigin's needle mhlem, o = 7/2.)

!
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Figure 5

Let C be the gent the needle osses a lineand letA («) be the gent the needle lies
within an anglex of the \ettical. If y is the distance of the southemost point of the

needle fom the line immedizly above, and6 is the angle the needle neskwith the

vettical, then in oder for the @entC N A(«) to occur ve must hae both

y<Lcosf6 ad —-a<6<a.

Thus a (Lcosh
! dy do
P{ICNA(@} = fi/fg -
J;W/Zfo dy de

But, the pobability of the eventA(«a) is 2a/ 7. Hence the conditional pbability of the
eventC, given tha the eentA(a) occuss, is

1|« 2L .
—WdfaLcosedB—stna.

2L .
— Sna

md = —9gnca«a
2a d '

T

P{C|A(a)} =



If d = L, then the pobability that the needle asses a linggiven tha it lies within an
anglea of the \ettical, is simpl sinca. As a approades 0this probability must
approad 1. Thus,we hare a pobabilistic intempretaion of the limit (1). lr this
argument to be a pof, however, one nust ealuae the intgral ebove without implicitly
using the limit (1)The aticle by Cipra [5] indicates a vay of finding J cos 6 df without
knowing the limit.

Expressions ér 7

The sinc function has plad a ole in the seah for anaytical expressionsdr the
universal constantr. The recent aticle by Castellanosd] gives a &scinding review of
the quest. One of tha$t expressionsdr 7, due to FancoisVieta in 1593can be
obtained lg obseving tha

. X
. sin-
sincx = snx_ cosZ —2 = cosZ sin(:Z = cos5 cosZ sinc5
X 2 X 2 2 2 4 4
2
and sofor arbitary n,
sincx = cos5 cos5 cosl Si nci
2 4 2n 20

Using the limit (1) we et
. - X
sincx = 11 cosﬁ,

n=1

which is knavn as Eules formula. Nav, we tale x = 7/2, and use the half-angle
formula for cosine to obtain thexpression

2_ 1 1+1\/i“

T 2V 2 2\ 2
This is the esult due td/ieta [3, p. 69]. Exaluding this expression wuld be a god
calculaor exercise but unfortunaely the conergence is ery slow.

The following formula for 7~ also was obtained Yo Euler:

™ &K1

6 =n?

To get this esult,Euler equted the codicient ofx? in the paver seies for sing
g KX e
MEX=2 73 e T

to the codicient ofx? in the poduct epansion

. X2 X2 X2
SINCX = <1_ﬁ><l_ﬁ><l_@> .
Euler obtained gt anotherdrmula for 7 in this way by equaing coeficients of the
fourth pavers ofx in these gpansions 3, p. 75].



Some Roles of sinx/x

We mention nw a few of the d¢assical vays in which sinc occus in mahemdics and its
applicaions. This suwey, together with the eéferenceswill provide the eader with
direction Pr further stug.

Fourier analysis. The sinc function ppeas frequenty in Fourier anaysis,a major
tedhnique in the solution of dérential equaions and in othergplicaions of
mahemdics. For a peiodic functionf tha has peod 27 and séisfies other easonhle
conditions f, page 90],Fourier anaysis allavs us to gpand the function in a
trigonometic seres of the érm

f(x) = a, + a,cosx + b, sinx + a,cos2x + b,sin2x + - - -. 2
whete thea,’s and theb;’s are constants thiaan be detenined

A function on the eal line thais nonpeiodic cannot bexpressed as a
trigonometic seres. Havever, the Fourier intggral formula gves an gpression ér sut
a function iwvolving intggrals of sines and cosinesitfrer than sums) th@&orverges to
the function &points of continity. To deive the Burer intggral formula, we first need
the following result,which can bedund in B, p. 78]; Iff is afunction on the eal line
tha is contiruous &the pointx and sésfies cetain other easonble conditionsthen
for ary positve rumbera,

f(x) = lim Xjaf(t)7—STsincs(t — ). 3)

This result leads immediely to the urer integral theoem as éllows. Frst note tha

Sinw x|®

X

1rs S .
—| coswxdw = = —SINCSX.
7J 0 v

0o

We can then wie
. Xx+a 1 rs
f(x) = sILTJx—af(t)q_rfo cos[w(t — X)] dw dt.

Changng the oder of intg@ration and &tending the intgration with respect td from
—oo to oo [6, p. 78],we et

1 oo (oo
100 =~ [~ fdcos[w(t — W] dtdo,
which is the Burier integral formula. This dervation follows [6]; see also4] and [1],

patticulary for proofs of (3).The Fourier integral formula can also be \iten in
exponential brm [1]:

1 (oo [ .
- = —iw(t—X)
) =5 j_w f_oo f(t)e dt do,
wheri is the imaginary number./—1 ande' = cost + i sint. We can then vite
1 (o -
f(x) = ZTJ_OO F(w)e®* dw,

where



o0

Flw) = f " f(he et

This last intgral is called the &uner transbrm of f.

From formula (3) we see thiathe sinc function liestahe coe of the Burier intgyral
formula. Havever, sinc gpeas in other vays in Fourier anaysis.A notevorthy example
is its ole in smoothing &urier seres to impove covergence and &a Gibbs’
phenomenon. Glis’ phenomenon is the tendgnaf a tuncaed Fourier seres to
display oscillations near points of discontiity. Smoothing or eraging is done to
reduce this ééct. To smooth a &urer seres tuncaed ton terms,we simpl multiply
thek th tem by the factor sindkw/n) [9, pages 530-538].

As noted ly Courant and Hilber[6, p. 78],the popety of sinc &pressed indrmula (3)
was discwered by Dirichlet,and this brmula is often used as theunddion of the
theol of Fourier seres. In cetain fields where Fourier methods & fundamentalsud
as imae processingsinc is gpropriately knowvn as the Dichlet function.

Spectral theory. The gpeaance of sinc in éurier anaysis plains its occuence in
areas of enmeeing tha rely on the anafsis of signalssud as comranicaion theoy
and acoustics. Mhemdically, a signal is simyl a function of timeln practice a signal
may actualy be a wltage or curent,which in tum represents another ghical quantity
sud as sound engy. For a peiodic signalf with Fourier seres (2),we can vigv the
signal as'decomposedinto perodic functions with disate flequencies (1, 2, . . .,
and“amplitudes”given ly the dsolute alues of the coétientsa,, a;, b;,.... Fora
nonperodic signalf on the eal line we must allav every frequenyg w. In the Burer
integral representdion

f(x) = %J_O:O F(w)e** dw,

we can vigv f as decomposed into a contous“spectum” of peiodic functions ofx,
F(w)e*, for the \arious frequenciesv. The analgue of the amplitudes in (2) j5(w)|,
the dsolute alue of the Burier transbrm. One can int@ret |F(w)| asan‘index of the
relaive amplitudes of the components of thegireng spectum off” [11, p. 181]. In
fact,|F(w)|?, called the paver spectum off at w [2], [9], measues the intensity of the
component with Bqueny w.

A fundamental signal is thectangular pulse mich has thedrm

£t) = S/2h if—h<t<h
h 0 otherwise

for positve constant$ andh. The inteyral over time of a érce acting on a system is a
measue of the sength of the drce Hence this rectangular pulsespresents adrce of
strengthS applied for a time 2. The Fourier transbrm of f,(t) is
h S . S . : .
— = aiwt — Y (a—iwh _ hdwh)y —
Folw) on® dt h=iw) (e geh) = Ssinc wh.
From the gaph of sinc in kgure 1,we see thiafor fixedh, the lager frequenciesv are
weakly represented in the signél. However, since lim _ , sincx = 1, it also bllows



tha for ary given frequeng w, ash - 0 the component of the signal witreflueng w
becomes stmger. In fact,the smaller the dation h, the lager the ange of the
frequencies with nerthe same séingthS. In acousticsa pulse of high séngth and
small dustion can be ealized, for exkample when two had sphees collide &a high
speed In this casgall the frequencies in the audérang would be epresented with
neaty uniform stength and a shardick is head.

Perhgs the most cebeated lesult in commnicaion theoy is Shannors sampling
theoem.A function is said to be band limited with band widhf its Fourier
transbrm vanishegF(w) = 0) outside the inteml (— ), (). Band limited functions ar
common as mandevices efectively transmit ony a cetain range of frequencies.
Shannors theoem stées tha for a band limited functiofy

=3 ny\ .
f(x) = n;wf (2(2) sinc 7 (2Qx — n).
Proofs can bedund in Hamming9, page 557] and Rosi€el3, page 53].This
remakable result stées tha by sampling a band limited function grét the discete set

1 . .
20 + 20 we can econstuct the entie function. Futher, as
Rosie sttes [L3, p. 56],the function is‘reconstituted Y erecting & ead sampling point
a sinx/x function of manitude equal to the sampledlwe 4 tha point’

of points{o, +

Further reading aout the oles of sinc in thei¢ld of signal anaisis gpear in 2], [11],
[12], and [L3].

Approximation theory and numerical analysis. Long bebre the sampling theem

of Shannon ppeaed E. T. Whittaker [15] noticed mag important popeties of the sinc
function,and sav its role in the gproximation of functions. Suppose thalues of a
functionf on the eal line ae gven d a discete set of points)h,n = 0, £1, +2, .. ., for
h > 0. Thenf can be intgrolaed d these pointsythe function

& : X

C(x) = n=E_Oof(nh)smc W(h n>
wherever the saes cowerges. Since theoots of sinc a the nonero multiplies of 7,
and sind = 1, the functionC takes on the samealues ag at the pointsah, n = 0,
n=+1,....The functionC is called theNhittaker cadinal function or f, or the“sinc
function” expansion off. From Shannors sampling the@m,we see thaWhittaker’s
cadinal function will eproduce a band limited functionhen the spacing beegn déa
points ish = 1/(2Q)). The functionC has been used impplicaions to the @nsmission
of informdion [14, p. 166]. Moeover, Stenger [14], in an cellent aticle, anal/zes
mary significant gplications of theéWhittaker cadinal function thoughout mmeical
analsis,including the aeas of intgoolaion theoy, numeical integration, and solution
of differential and intgral equéions.As Sten@r notesE. T. Whittaker usedC to obtain
altemae epressions of entér functionsand called it'a function of pyal bood in the
family of entire functionswhose distinguished ppeties s@arate it from its bougeois
brethren?”

Condusion. We hare spent some time styidg sinx/x and its seeral roles in
mahemadics and aplicaions.The esults of the mvious section hint thain some
senseit is a basic bilding bock for a lage dass of functionsThere ae other



occurences of sinc thiave could hae discussedn medanics and quantum péics, it
arnises in the solution of theawe equéon [8, section 16.3]. In mbability theoty, sinc is
the damcteistic function of the unirm random \ariable on(—1, 1).

We hope this dicle will stimulate reades to think &@out the pevalence of the sinc
function.When we introduce sirx/x in the calculus cose prepaiing to find the
derivatives of sinx and cox, we might point out thiathis function is signi€ant in its
own right, and tha its use in calculus is not just an ideld occurence Mary of our
calculus students arengneeing and science majgprand ae likely to see this function
again.
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