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and-paper techniques and some form of computer assistance. These are problems

that can be used as calculus laboratory projects. We expect the computer to act as a
strong and convenient number-cruncher, but we expect the student to supply the
conceptual framework. For some of the problems below, finding the proper scaling so
that one can see the extrema is a bit difficult, but we feel that a student will profit from
this trial-and-error experience. The main computational difficulty of these problems is
approximating all the roots of a polynomial, so your computer package should have a
reliable polynomial root finder.

I n this capsule, we suggest some calculus problems whose solutions involve pencil-

Assuminga, b, c,andd are positive real numbers, we determine the important
properties of the graphs of the family of rational functions,

ax2+bJr cx2+d
(x+ b2 (x+d?2’

(We encountered this family in a problem in 81&M ReviewW3], wheref is described

as a mean-squared-error function for a class of regression models, and the author asks
for conditions under which the minimum odn [0, oo) is unique.) As we will show in

the following discussion, this family of functions is a good place to make the transition
from usual textbook rational function graphs to graphs that should be analyzed with the
aid of a computer. (Students who hope to push buttons and get sufficient information
will be disappointed.)

f(x) = (1)

In the following list we suggest some problems, following each with remarks about its
solutions. Problems 1 and 2 should be solved via pencil and paper analysis, while
Problems 3 and 4 should be solved with the aid of one or two of the many available
computer programs. (We have uggerive andMathematicabut these powerful
programs are not necessary.)

Problem 1. Graph the function

F(x) = % 2)

finding the asymptotes, monotonicity intervals, concavity intervals, extrema, and
inflection points. (The assumption treaindb are positive insures that each graph has
the same basic shape.)

We prefer that students graph some specific instances of these functions using hand
calculations and then graph the general case, labeling important points on the graph with
expressions involving andb. The derivatives are messy, but we have prepared our
students by doing similar calculations before looking at these problems. They should
especially use hand calculations to find the minimum-=atl/a, the unique inflection
point atx = 3/(2a) + b/2 and the horizontal asymptoteyat a, since it would be
possible to overlook these features on a computer-generated plot.



Problem 2. Use the esults fom pioblem 1 to mak a pugh sletch of the gaph of (1)
for(a, b, c,d) = (2, 3, 3, 1) and those alues ofx notbetweenx = m= min{1/a, 1/c}
andx = n = max{3/(2a) + b/2, 3/(2c) + d/2}. Explain why it is difficult to sketch
this function on the omitted domaim, n).

As in poblem 1,pencil and pper anaysis is suficient to work problem 2. By thinking
of the function in (1) as the sum ofdwems (eab in the brm of (2)),and ealizing
tha bothf” andf” are the sum of the deetives of the tw tems,one has no diiculty
sketching this function outside the intex (m, n). Although functions in thedim of (1)
clealy must hae & least one minimm on(m, n), a complete angtical detemination
of the 10ots of the devatives is dificult.

Problem 3. Use a function plotter to plot someagnples of (2) sutas(a, b) = (2, 3)
and(a, b) = (3, 1). A student using a function plotter will notice the scalingblam
tha often occus when a computer plots a function (s@p.[If one scales thg-axis to
see moe of the \ertical asymptotetax = —b, then one will hae toude seeing the
unique mininum & x = 1/a and vice ersa.

Problem 4. Use a function plotter pgram to plot (1) ér (a, b, c,d) = (2,3, 3, 1).

Use the pom tedinique and aaot finding program to fnd the g@proximate locdion of
the extrema in the interal (m, n) and the minimm in the inteval betneen—b and —d.
Reped this poblem for (a, b, ¢, d)= (2, 1, 2, 2) and(a, b, ¢, d) = (0.02, 0.7, 10.0, 0.01).

Students will ind tha a scaling of the axis to slvahe goss eaures of the gaph will
not shov the extrema in the intesal (m, n). Still, they can use theaom tedinique and a
numeical root extraction outine to ind very good gproximations to thex coodinaes
of the extrema. (Using a computer @&ya system todract the oots of the durth
degree poynomial in the irst dervative’s rumeitor would be slov and its esults
difficult to inteipret.) After working the frst two examples of posblem 4,students might
guess thiathe gaphs of functions of theofm (1) all hae the same spa The last
example illustetes thathis guess is inceoect. For it, students shouldrfd four extrema
and thee infection points. Fure 1 and gure 2 ae plots of this xample with a
different scaling on e#cplot.

4

Figure 1

Plot of (1) with(a, b, ¢, d) = (0.02, 0.7, 10.0, 0.01) shaving a mininum
and two vertical asymptotes.
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Figure 2
Plot of (1) with(a, b, ¢, d) = (0.02, 0.7, 10.0, 0.01) shaving three etrema.

The instuctor might wish to discuss the implins of the &cts thathe gaph of (1)
must hae positve concaity for x less thanm and tha the dgree of the nomeitor of
the deivative of (1) is ory four.

We condude by noting the gistence of a computianal test to detenine if the
functions (1) (withb not equal tad) have one or tw minima in the interal (m, n)

(see B]). One can detenine if the pots of a dburth degree poynomial (sut as the
numeitor of the deivative of (1)) ae real,comple, or repeded by computing the
disciminant of the polnomial directly from its coeficients and pplying results fom
the theoy of equaions (see]]). Using a éw facts &out ary function in the érm of (1)
with the positvity assumptions oa, b, ¢, andd, it can be shan tha if the discrminant
is zero or neative then the ph of function (1) has one minum in the inteval

(m, n), while if the disciminant is positie then the gph has tw minima and a
maximum in(m, n).
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