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Student: The car has a speed of 50 miles an hour. What does that mean?
Teacher: Given anye >0, there exists& such thaftjf— t;| <8,  then

Student: How in the world did anybody ever think of such an answer?

t all intuitive—in fact, quite the contrary. The calculus is a subject dealing with

peeds and distances, with tangents and areas—not inequalities. When Newton
and Leibniz invented the calculus in the late seventeenth century, they did not use delta-
epsilon proofs. It took a hundred and fifty years to develop them. This means that it was
probably very hard, and it is no wonder that a modern student finds the rigorous basis of
the calculus difficult. How, then, did the calculus get a rigorous basis in terms of the
algebra of inequalities?

Prhaps this exchange will remind us that the rigorous basis for the calculus is not
s

Delta-epsilon proofs are first found in the works of Augustin-Louis Cauchy
(1789-1867). This is not always recognized, since Cauchy gave a purely verbal
definition of limit, which at first glance does not resemble modern definitions: “When
the successively attributed values of the same variable indefinitely approach a fixed
value, so that finally they differ from it by as little as desired, the last is callduitihe

of all the others” [L]. Cauchy also gave a purely verbal definition of the derivative of
f(x) as the limit, when it exists, of the quotient of differencex + h) — f(x))/h when
h goes to zero, a statement much like those that had already been made by Newton,
Leibniz, d’Alembert, Maclaurin, and Euler. But what is significant is that Cauchy
translated such verbal statements into the precise language of inequalities when he
needed them in his proofs. For instance, for the derivajve [

(1) Leté, e be two very small numbers; the first is chosen so that for all numerical
[i.e., absolute] values df less thar, and for any valueincluded [in the
interval of definition], the ratio(f(x + h) — f(x))/h will always be greater than
f/(x) — £ and less thaf'(x) + e.

This one example will be enough to indicate how Cauchy did the calculus, because the
guestion to be answered in the present paper is not, “how is a rigorous delta-epsilon
proof constructed?” As Cauchy’s intellectual heirs we all know this. The central

question is, how and why was Cauchy able to put the calculus on a rigorous basis, when
his predecessors were not? The answers to this historical question cannot be found by
reflecting on the logical relations between the concepts, but by looking in detail at the
past and seeing how the existing state of affairs in fact developed from that past.

Thus we will examine the mathematical situation in the seventeenth and eighteenth
centuries—the background against which we can appreciate Cauchy’s innovation.

We will describe the powerful techniques of the calculus of this earlier period and the



relaively unimpessve viens put brth to justify themWe will then discuss o a sense
of urgeng/ about ligorizing anaysis gadually developed in the eighteenth centuMost
important,we will explain the deelopment of the nthemadical tediniques necessar
for the n&v rigor from the vork of men like Euler d’Alembett, Poisson,and especiaf
Lagrange. Fnally, we will shov how these ménemadical results though often deeloped
for puposes &r removed from estalishing founddions for the calculusywere used ¥
Caudy in constucting his ne rigorous anajsis.

The Practice ofAnalysis: From Newton to Euler. In the lde se&enteenth centyy
Newton and Leibnizalmost sinultaneous}, independent invented the calculudhis
invention irvolved thee things. Fst,they invented the gnerl concgts of diferential
quotient and intgral (these a Leibnizs tems; Nevton called the congas “f luxion”
and“fluent”). Secondthey devised a notaon for these congas which made the
calculus an algrithm: the methods not oplworked but were easy to usd heir
noteions had ged heuistic pover, and ve still use Leibniz dy/dx and [y dx, and
Newton’s x, today. Third, both men ealized tha the basic pycesses ofifiding tangnts
and aeastha is, differentiging and intgrating, are mutually inverse—wha we naw
call the Fundamentdlheoem of Calculus.

Once the calculus had beerented mahemadicians possessed artemely powerful
set of methodsoir solving poblems in ggomety, in physics,and in pue anaysis. But
wha was the nture of the basic conpés? or Leibniz,the diferential quotient \as a
ratio of infinitesimal diferencesand the intgral was a sum of imfitesimals. er
Newton, the deivative, or fluxion, was desdbed as aate of dhange; the intgral, or
fluent,was its iverse In fact,throughout the eighteenth cenguthe inteyral was
geneanlly thought of as the werse of the diferential. One might imgine asking Leibniz
exactly wha an infnitesimal was,or Nevton wha a rate of dhang might be Newton’s
ansver, the best of the eighteenth cemntus instiuctive. Consider aatio of finite
guantities (in moder notdion, (f(x + h) — f(x))/h ash goes to er0). The ®@tio
eventually becomes Wat Newton called arfultimate ratio.” Ultimate ratios ae “limits

to which the gtios of quantities deeasing without limit do &fays comverge, and to
which they gpproadh neaer than ly ary given diference but never go beyond, nor ever
read until the quantitiesanish’ [3]. Except for “reading” the limit when the
guantities ®nish,we can tanslde Nevton’s words into our algbraic languge. Newnton
himself, however, did not do thisnor did most of hisdllowers in the eighteenth
centuy. Moreover, “never g begyond” does not allev a \ariable to oscillde @out its
limit. Thus,though Nevton’s is an intuitrely pleasing pictug, as it stands it as not and
could not be usedf proofs dout limits. The deinition sounds god but it was not
undestood or aplied in algbraic tems.

But most eighteenth-cenfumahemadicians would object,"W hy worry about
founddions?’ In the eighteenth centyrthe calculusintuitively undestood and
algorithmically executed was gplied to a wideange of poblems. For instancethe
patial differential eqution for vibrating stings was soled; the equ#ons of motion ér
the solar system &ve soled; the Lalace tansbrm and the calculus ofavations and
the gamma function wre invented and aplied; all of mebanics vas worked out in the
languae of the calculusThese vere gea adievements on the paof eighteenth-



centuy mathemadicians.Who would be gealy concened dout founddions when sub
important poblems could be successfylireaed Ly the calculus? Resultsaere what
counted

This point will be better@preciged ly looking & an ekample vhich illustrates both the
“uncritical” approad to concets of the eighteenth cenyuand the immense per of
eighteenth-centyrtechniques from the vork of the gea master of sut tedniques:
Leonhad Euler The poblem is to find the sum of the sexs

1/1+1/4+1/9+ -+ 1/ + -
It cleally has aihite sum since it is boundethave by the seies
1+1/1-2+1/2-3+1/@8-4) + - +1/[(k—1) - K]+

whose sum as knavn to be 2; dhann Benoulli had bund this sum ptreding
1/(1-2) +1/(2-3) +1/(3-4) + - - - as the diference betwen the sées

1/1+ 1/2+ 1/3 + - - -and the sées1/2 + 1/3 + 1/4 + - - -, and obsering tha
this difference telescoped]|

Euler's summson of

S 1/
K=1

makes use of a lemmadm the theor of equdions: given a poynomial equaon whose
constant tem is onethe coeficient of the linear ten is the poduct of the eciprocals
of the oots with the signshtanged This result was both disceered and demonsiied
by consideing the equiion (x — a)(x — b) = 0, having rootsa andb. Multiplying and
then dviding outab, we obtain

(1/ab)x? — (1/a+ 1/b)x + 1 = 0O;
the result is nav olvious, as is the ension to equans of higher dgree
Euler’s solution then considethe equidon sinx = 0.
Expanding this as an infte seres, Euler obtained

X — x3/31 + x5/5l — - - - =0,
Dividing by x yields

1 —x2/3 + x4/51 —- - - =0,
Finally, substitutingx® = u produces

1—u/3' +uw5s —---=0.

But Euler thought thigpower seres could be manipuied just like polynomials.Thus,
we nav have a poynomial equéion in u, whose constant ter is one Applying the
lemma to itthe coeficient of the linear ten with the sign banged is1/3! = 1/6. The
roots of the equ#n in u are the pots ofsin x = 0 with the substitutionu = x2, namey
w?, 472,972, . . . .Thus the lemma implies

1/6 = 1/7w2+ 1/(47d)+1/(972) + - - -



Multiplying by 72 yields the sum of the iginal seres [5]:
1/1+1/4+1/9+- - -+1/k+- - = 72/6.

Though it is easy to iticize eighteenth-centyraguments lile this br their lak of
rigor, it is also unéir. Founddions, precise specitations of the conditions underhich
such manipuldéions with infnites or infnitesimals vere admissilke, were not \ery
important to men lik Euler because without shcspeciications they made impaiant
new discoreries,whose esults in cases léthis could eadily be \erfied. When the
founddions of the calculus &re discussed in the eighteenth ceptthrey were treaed
as secondgr Discussions ofdunddions gpeaed in the intoductions to booksn
populaizations,and in philosophical vitings, and were not—as thg are nav and hae
been since Calg’s time—the subject of ticles in eseach-oniented jounals.

Thus,where we once had one question toaeg we nawv have two. The irst emains,
where do Cauly’s rigorous tetiniques come im? Secondone nust nav ask,why
rigorize the calculus in therét place? If é&v mahemadicians were \ery interested in
founddions in the eighteenth cenyf6], then when,and why, were dtitudes tlanged?

Of course to esthlish rigor, it is necessg—though not sdfcient—to think fgor is
significant. But moe impotant,to estlish rigor, it is necessar (though also not
sufficient) to hae a set of tdmiques in ristence vinich ae suitdle for tha purmpose

In paticular, if the calculus is to be madeyorous ly being educed to the a#ipra of
inequalitiespne nust hae both the algbra of inequalitiesand fcts dout the congats
of the calculus thtacan be gpressed in tens of the algbra of inequalities.

In the ealy nineteenth centyythree conditions heldof the frst time:Rigor was
consideed impotant; thee was a vell-developed algbra of inequalities; andteitain
propeties were knavn éout the basic conpés of anatsis—Ilimits, corvergence
contiruity, delivatives,integrals—piopeties which could be epressed in the langga
of inequalities if desed Caudy, followed by Riemann andlVeierstrass,gave the
calculus aigorous basisyusing the akad/-existing algebra of inequalitiesand lilt a
logically-connected sticture of theoems &out the congats of the calculus. It is our
task to &plain hav these thee conditions—the deloped algbra of inequalitiesthe
importance of igor, the gproprate piopeties of the congas of the calculus—came
to be

The Algebra of Inequalities. Today, the algbra of inequalities is studied in calculus
courses because of its use as a basishie calculusbut why should it hae been
studied in the eighteenth centwhen this aplicaion was unknan? In the eighteenth
centuy, inequalities vere impotant in the stug of a major tass of esults:
approximations. For example consider an eqtian sud as(x + 1)* = a, for u not an
integer. Usually a cannot bedund eactly, but it can be pproximated by an ininite
selies. In geneal, given some nmbern of terms of sub an @proximating seres,
eighteenth-centyrmahemadicians sought to compute an upper upper bound on the
error in the @proximation—tha is, the diference betwen the sum of the ses and the
nth patial sum.This computdon was a poblem in the algbra of inequalities. €an
d’Alembett solved it for the impotant case of the binomial $&s; gven the mmber of
terms of the seesn, and assuming implicyl tha the seies cowerges to its sumhe
could ind the bounds on therer—tha is, on the emainder of the sms after thenth



term—by bounding the ses dove and bela with corvergent ggometrc progressions
[7]. Similarly, Joseph-Louis Lagrang invented a n& gpproximation method using
contirued flactions andby extremel intricate inequality-calcul@ons, gave necessar
and suficient conditions ér a gven itegtion of the @proximation to be toser to the
result than the gwious iteetion [8]. Lagrange also dewed the Lgrange remainder of
the Taylor seres [9], using an inequality hich bounded theemainder bove and bela
by the maxinum and mininam values of thenth defvative and thenplying the
intermedide-value theoem for contiruous functionsThus though sub eighteenth-
centuy work [10], there was ly the end of the eighteenth centar dereloped algbra of
inequalitiesand people used toasking with it. Gven ann, these people arused to
finding an eror—tha is, an gsilon.

Changing Attitudes toward Rigor. Mathemdicians were much mote inteested in
finding rigorous bunddions for the calculus in 1800 than thbead been a huned years
before. There ae mary reasonsdr this:no one enoughybitself, but gopaently
sufficient when acting tgether Of couse one might think thaighteenth-centyr
mathemdicians were alvays making erors because of the lkof an plicitly-
formulated igorous bunddion. But this did not occuilhey were usuay right, and br
two reasons. One is thd one deals witheal \anables, functions of one aiable, seies
which ale paver seres,and functions asing from ptlysical poblems,ermrors will not
occur too oftenA second eason is thamahemadicians like Euler and Lplace had a
dee insight into the basic ppeties of the congas of the calculusand were ale to
choose fuitful methods andwade pitklls. The ony “error” they committed vas to use
methods thiasho&ked mahemaicians of lder ages who had gown up with the igor of
the nineteenth centyr

Wha then vere the easonsdr the depened integst in igor? One set ofeasons
was philosophical. In 1734he Biitish philosopher Bishop Bkeley had d@tadked

the calculus on thergund tha it was not igorous. InThe Analyst,or a Discouse
Addressed to an Iidel Mathemadician, he said themathemaicians had no isiness
attacking the uneasonbleness of eligion, given the vay they themseles easoned
He rdiculed fuxions—"“velocities of ganescent inements—calling the eanescent
increments‘ghosts of dpartted quantities’[11]. Even moe to the pointhe corectly
criticized a mmber of speci€ aguments fom the witings of his méhemadical
contempoaries. For instancehe dtadked the pocess ofihding the fuxion (our
deiivative) by reviewing the stps of the pocessif we considely = x? taking the atio
of the diferences(x + h)? — x?)/h, then simplifying to2x + h, then lettingh vanish,
we obtain2x. But ish zero? If it is,we cannot meaningfylldivide by it; if it is not
zero, we hare no ight to thiow it awvay. As Belkeley put it, the quantity v have called
h “might have signifed either an in@ment or nothingBut thenwhich of these sor
you male it signify, you must ague consistenglwith sud its signifcation” [12].



Since an adeqtmresponse to B&eley’s objections wuld hare involved lecanizing
tha an equton involving limits is a shahand epression ér a sequence of
inequalities—a subtle and fidult idea—no eighteenth-cenjuanayst gave a fully
adequée ansver to Bekeley. However, mary tried. Madaurin, d’Alembett, Lagrangg,
Lazae Canot,and possity Euler, all knewv about Bekeley’s work, and all wote
something bout founddions. So Bételey did call dtention to the question. Maver,
except for Madaurin, no leading ménemadician spent rach time on the question
because of Bé&eley’s work, and @en Madaurin’s influence lg in other felds.

Another fctor contibuting to the ne interest in fgor was thathere was a limit to the
number of esults thacould be eated ly eighteenth-centyrmethods. Near the end of
the centuy, some leading nthemdicians had bgun to el tha this limit was & hand
D’Alembert and Lagrange indicde this in their caespondencewith Lagrange calling
higher méhemdics “decadent’[13]. The philosopher Didet went so &r as to @im

tha the mahemadicians of the eighteenth cemyunad“erected the pillas of Hercules’
beyond which it was impossile to g [14]. Thus,there was a pateived need to
consolidae the @ins of the past centur

Another“factor’ was Layrange, who became inemasingy interested in éunddions,and
through his actiities, interested other ntaemdicians. In the eighteenth cenyur
scientific academies déred pizes Dr solving major outstanding @olems. In 1784,
Lagrange and his collegues posed the giolem of founddions of the calculus as the
Berlin Acadeny’s piize poblem. Nobod@ solved it to Lagrange’s sdisfaction,but two of
the enties in the competition &re laer expanded into full-length book#he irst on the
Continent,on founddions: Simon LHuilier’ s Exposition élémentardes pincipes des
calculs supéeurs, Beilin, 1787,and Lazag Canot’s Réfexions sur la mégahysique du
calcul infnitésimal Paris, 1797.Thus Layrange deally helped evive inteest in the
problem.

Lagrange’s inteest stemmed in pafrom his espect ér the pever and gneality of
algebra; he vanted to gin for the calculus the caiinty he beliged alggbra to possess.
But thee was anotherdctor inceasing integst in bunddions, not only for Lagrangg,
but for mary other m#éhemdicians ly the end of the eighteenth centuthe need to
tead. Teading forces ones atention to basic questionget bebre the mideighteenth
centuy, mahemadicians had often made theivilng by being @tached to oyal couts.
But royal couts dedined; the mmber of méhemdicians inceased; and ntlaemdics
began to look useful. iEst in militaty sdhools and leer on & the Ecole Blytechnique in
Paris, another line of wrk became wailable: teahing mahemdics to students of
science and engeeing. The Ecole Blytechnique vas bunded ly the Fend
revolutionarly govemment to tain scientistswho, the govemment beliged, might prove
useful to a moder stde. And it was as a lecter in anajsis d the Ecole Blytedhnique
that Lagrange wrote his tvo major works on the calculus fch treaed founddions;
similarly, it was 40 yas ealier, teading the calculustahe Military Acadeny at Turin,
that Lagrange had irst set out to wrk on the poblem of founddions. Because tehmg
forces one to ask basic questiobsit the nture of the most impaant concpts, the
change in the economic @umstances of nilaemaicians—the need to telae—provided
a cdalyst for the cystallization of the bunddaions of the calculus out of the histl
and mahemadical badkground In fact,even well into the nineteenth cenymuch of
founddions was bon in the teaking situdion; Weierstrasss founddions come fom his



lectures & Berlin; Dedekind irst thought of the blem of continiity while teating &
Zurich; Dini and Landau tured to dbunddions while teading anaysis; angd most
important for our pesent pysosesso did Caulky. Caudty’s founddions of anafsis
appear in the books based on his leesud the Ecole Blytedhnique; his book of 1821
was the ifst xample of the gea Frendh tradition of Cours d’analyse

The Concepts of the Calculus. Arising from algebra, the alggbra of inequalities as
now there for the calculus to beeduced to; the desito male the calculusigorous had
arisen though consolidton, through philosopy, through teahing, through Layrancg.
Now let us tun to the méhemdical substance of eighteenth-cegtanaysis,to see
wha was knevn aout the congets of the calculus befe Cauby, and wha he had to
work out for himself in order to deihe, and pove theoems &out, limit, corvergence
contiruity, deirvatives,and intgrals.

First, consider the conge of limit. As we hare alead/ pointed outsince N&ton the
limit had been thought of asb@mundwhich could be pproaded doser and loset
though not syrassedBy 1800,with the work of L'Huilier and Lacoix on altenating
sefes, the estiction thd the limit be one-sided had bedmadonedCaudy
systemécally translded this efined limit-concet into the algbra of inequalitiesand
used it in poofs once it had been samslded; thus he ge reality to the oft-epeded
eighteenth-centyrstaement thathe calculus could be based on limits.

For example consider the conge of corvergence Madaurin had said akad/ tha the
sum of a sees was the limit of the paial sums. Br Cauty, this meant something
precise It meant thg given ane, one could ihd n sud tha, for more thann temms, the
sum of the inhite seres is withine of thenth patial sum.Tha is the everse of the
error-estimding procedue tha d’Alembett had usedFrom his deihition of a seies
having a sumCaudy could pove thd a gegometic progression with adius less in
absolute alue than 1 corerged to its usual sums we hare said d’Alembertt had
shavn tha the binomial sees for, say, (1 + X)?9 could be boundedbave and belw by
cornvergent geometic progressions. Caulny assumed thaf a seres of positve tems is
bounded hove, term-by-term, by a comvergent ggometic progressionthen it conerges;
he then used shacompaisons to pove a umber of testsdr corvergence:the 0ot test,
the mtio test,the Iagarithm test.The tieament is quite elgant [L5]. Taking a tebnique
used adw times ly men like d’Alembet and Layrange on an ad hoc basis in
approximations,and using the defition of the sum of a s@s based on the limit
concept, Caudy creaed the irst rigorous theoy of corvergence

Let us nev tum to the congat of contiruity. Cauty gave essentiayl the moden
definition of contiruous functionsaying tha the functionf (x) is contiruous on a iyen
interval if for ead x in tha interval “the numeiical [i.e., absolute] \alue of the
differencef (x + a) — f (x) deceases inddfitely with '’ [16]. He used this défition
in proving the intemedide value theoem for contiruous functions17]. The poof
proceeds § examining a functiorf (x) on an inteval, sa [b, c], wher f (b) is negative,
f(c) is positive, and diiding the inteval [b, c] into m patts of widthh = (c — b)/m.
Caudy consideed the sign of the functiort the pointd (b), f(b + h), . . .,

f(b + (m — 1)h), f(c); unless one of thealues off is zero, there ae two values ofx
differing by h sudh tha f is negative & one positve & the otherRepeding this pocess
for naw intewvals of width(c — b)/m, (c — b)/m?2, . . . gives an incgasing sequence of



values ofx: b, b;, b,, . . . for which f is negative, and a de@asing sequence oélies
of x: ¢, ¢, c,, . . . for which f is positve, and sub tha the diference betwenb, andc,
goes to ero. Cauty asseted thd these tw sequences ust hae a common limita.

He then agued thasincef (x) is contiruous,the sequence of the gative \aluesf (b,)
and of positie \aluesf (c,) both cowerge tavard the common limif (a), which must
therefore be ero.

Caudy’s pioof involves an akad/ existing tedinique which Lagrange had aplied in
approximating real 10ots of poynomial equ#ons. If a poynomial was ngative for one
value of the arable, positive for anotherthere was a oot in betveen,and the
difference betwen those tev values of the arnable bounded the esr made in taking
either as an@proximation to the oot [18]. Thus @ain we have the algbra of
inequalities poviding a te@inique which Caudyy transbrmed flom a tool of
approximation to a tool of igor.

It is worth remaking & this point th& Caudy, in his teament both of covergence and
of contiruity, implicitly assumedatious forms of the completenessgmety for the eal
numbes. For instancehe tieaed as obious tha a seles of positve tems,bounded
above by a comwvergent ggometrc progression corverges:also,his poof of the
intermedide-value theoem assumes tha bounded monotone sequence has a limit.
While Cauty was the ifst system@cally to exploit inequality poof tediniques to
prove theoems in analsis, he did not identify all the implicit assumptionsoait the
real umbes thd sud inequality tebniques inolve. Similally, as the eader mg have
alread/ noticed Caudy’s defnition of contiruous function does not distinguish
between vha we naw call point-wise and unoirm contiruity; also,in treding seres of
functions,Caudy did not distinguish beteen pointwise and umfm corvergence The
verbal brmulations like “for all” tha are involved in doosing deltas did not distinguish
between“f or ary epsilon and 6r all X’ and“for ary x, given ary epsilon” [19]. Nor was
it at all dear in the 1820s o much depended on this distinctiosjnce poofs dout
contiruity and comergence vere in themseles so neel. We shall see the same
confusion betwen unibrm and point-wise comrgence as & tun nov to Cauty’s
theowy of the deivative.

Again we beajin with an gproximation. Lagrange gave the dllowing inequality &out
the deivative:

2) f(x+ h) =f(x + hf(x) + hV,

where V goes to 0 withh. He intepreted this to mean thagiven ary D, one canihd h
sufficiently small so thaV is between—D and+D [20]. Cleaty this is equralent to
(1) @ove, Caudy’s delta-psilon darmacterzation of the devative. But hav did
Lagrange obtain thisesult?The ansver is suprising; for Lagrangg, formula (2) was a
consequence afaylor’'s theoem. Layrange believed tha ary function (thais, any
analtic expressionwhether inite or infnite, involving the \ariable) had a unique
power-seles pansion (Bcept possilly a a finite number of isoléed points)This is
because he belied thd there was ant‘algebra of infinite seres;’ an algebra exemplified
by work of Euler sub as the xample ve gave éove. And Lagrange said thathe way to
malke the calculusigorous was to educe it to algora. Although thee is no“algebra” of
infinite seres tha gives pover-selies xpansions without gnconsideation of
convergence and limitsthis assumption led Igpange to deine f/(x) without reference to



limits, as the codicient of the linear ten in h in the Taylor seres epansion ér

f(x + h). Following Euler Lagrange then said thafor ary pover seies inh, one could
take h sufficiently small so thaary given tem of the saes exceeded the sum of all the
rest of the tans following it; this gproximation, said Lagrangg, is assumed in
applicaions of the calculus toepmety and mebanics R1]. Applying this
approximation to the linear ten in theTaylor sefes poduces (2)which | call the
Lagrange piopety of the deivative. (Like Caubty’s (1),the inequality-tansldion
Lagrange gves br (2) assumes thajiven aly D, one fndsh suficiently small so

|V| < D with no mention aaever ofx.)

Not only did Lagrange stde piopety (2) and the assod&d inequalitieshe used them as
a basis ér a umber of poofs @out deivatives:for instanceto prove tha a function

with positve deivative on an interal is inceasing thes, to prove the mean-alue
theoem for deivatives,and to obtain the lgrange remainder ér theTaylor seifes.
(Details mg be und in the wrks cited in 2].) Lagrange also aplied his esults to
characterize the popeties of maxima and minimand oders of contact beteen

curves.

With a few modifications, Lagrange’s pioofs ae valid—provided tha propety (2) can
be justifed. Caudy borowed and simplied wha are in efect Lagrange’s inequality
proofs @out deivatives,with a few improvementspasing them on hisam (1). But
Caudiy made these pofs leitimate because Cahg deined the dawative precisel to
sdisfy the elevant inequalities. Oncegain, the key propeties come fom an
approximation. For Lagrangg, the deivative wasexactly—no gsilons needed—the
coeficient of the linear ten in theTaylor sefes; formula (2),and the caesponding
inequality thaf(x + h) — f(x) lies betveenh(f’(x) + D), were gproximations. Cauby
brought Lagrange’s inequality popeties and poofs tagether with a defition of
deiivative devised to mak those teaniques igorously founded 22].

The last of the conpés we shall considethe inteyral, followed an analgous
development. In the eighteenth centuthe intgral was usuajl thought of as the werse
of the diferential. But sometimes thewverse could not be computeglaetly, SO men
like Euler emaked tha the intgral could be pproximated as osely as one liked by a
sum. Of couse the geometic picture of an aga being pproximated by rectanglesor
the Leibnizian defition of the intgral as a sumsugyests this immedtaly. But what is
important for our puposes is thiamuch work was done ongproximating the \alues of
definite intgyrals in the eighteenth cenwincluding consideations of hav small the
subintevals used in the sums should been the function osciltas to a geaer or
lesser gtent. For instanceEuler teaded sums of theofm

if (%) (X1 — X

as gproximations to the intgral [~ f(x) dx [23)].

In 1820,S. D. Poisson,who was inteested in compbeintegration and thezfore moe
concened than most peoplédaut the gistence and bek&r of integrals, asled the
following question. If the inggal F is defned as the antideetive off, and if

b — a = nh, can it be poved thaF(b) — F(a) = [?f(x) dx is the limit of the sum

S=hf(a) + hf(a+ h) + "~ + hf(a+ (n — 1h)



ash gets small?$is an @proximating sum of the eighteenth-cengusot.) Poisson
called this esult“the fundamental mposition of the thegrof defnite integrals’’

He pioved it by using another inequalityesult:the Taylor sefes with emainderHrst,
he wote F(b) — F(a) as the telescoping sum

(3) F@+h —F@ + Fa+ 2h) — F(a+ h)
+ "+ Fb) — Fla+ (n— 1h)
Then,for ead of the tems of the drm
F(a + kh) — F(a + (k — 1)h),
Taylor's seres with emainder tyes,since ly deinition F’ = f,
F(a+ kh) — F(a+ (k — 1)h) =
hf(a + (k — 1)h) + Rh**W
where w > 0, for someR,. Thus the telescoping sum (3) becomes
hf(a) + hf(a+ h) + - -+ hf(a+ (n — 1)h)
+ (R, + " "+ R)h*W,
SoF(b) — F(a) and the sunSdiffer by (R, + * * * + R )ht*W,
Letting R be the maximam \alue br theR,,
(R, + ...+ R)M*wsn - Rh*v)
= R-nh-h¥=Rb - ahv.
Therefore, if his taken suficiently small,F(b) — F(a) differs from Sby less than an
given quantity 24].

Poissons was the if st atempt to pove the equialence of the antidesative and limit-
of-sums conagations of the intgral. However, besides the implicit assumptions of the
existence of antidévatives and boundedr §t dervatives br f on the gven intewal, the
proof assumes thdhe subinterals on vhich the sum is tadn ae all equal. Should the
result not holddr unequal diisions also? &sson thought s@nd justifed it by saying,
“If the integral is represented Y the aea of a cure, this aea will be the samé we
divide the diference. . . into an infnite number of equal p&s, or an infnite number
of unequal pds following ary law’’ [25]. This, however, is an asséion, not a poof.
And Caudly sav tha a poof was needed

Caudy did not like formalistic aguments in supposedtigorous subjectssaying tha
most algbraic formulas hold“‘only under cein conditionsand br cetain values of
the quantities thecontain’ [26]. In paticular, one could not assume thaha worked
for finite expressions autontigally worked for infinite onesThus,Caudy shaved tha
the sum of the smrs1/1 + 1/4 + 1/9 + * * * was#?/6 by actualy calculding the
difference betwen thenth patial sum ands?/6 and shwing tha it was arbitarily
small 27]. Similarly, just because themas an opetion called taking a derative did
not mean thiathe irverse of tha opegtion aways pioduced aesult. The istence of
the deinite integral had to be mved And hov does one jve istence in the 1820s?
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One consticts the mdnemaical object in questionybusing an eighteenth-cenyur
approximation tha corverges to it. Cauley defned the intgral as the limit of Euler
style sums

PRICACHPESY

forx.,, — X, sufficiently small.Assuming &plicitly tha f(x) was contimous on the
given intewval (and implicity tha it was unibrmly contiruous),Caudy was dle to
shav tha all sums of theform goproat a ixed \alue called ly deinition the intgral
of the function on thiainterval. This is an gtremely had proof [28]. Finally, borowing
from Lagrange the mean-alue theoem for intgyrals, Caudy proved the Fundamental
Theoem of Calculus29].

Condusion. Here ae all the pieces of the puzzleewiiginally set out to sok.
Algebraic gproximations poduced the akgpra of inequalities; eighteenth-cengur
approximations in the calculus pduced the useful ppeties of the congas of
analsis: d’Alembett’s eror-bounds ér seres, Lagrange’s inequalities laout deivatives,
Euler’'s goproximations to intgrals. There was a n# interest in bundaions.All that
was needed as a suiciently grea genius to hild the nev founddion.

Two men camelose In 1816,Caill Friedrich Gauss gve a fgorous teament of the
cornvergence of the ypergeometic seres,using the telenique of compang a seies
with convergent geometic progressions; hwever, Gauss did notige a gneal
foundaion for all of anaysis. Benhad Bolzanowhose vork was little knavn until the
18605, edhoing Lagrange’s call to educe the calculus to &ga, gave in 1817 a
definition of contiruous function like Cauty’s and then mved—by a diferent
tedhnique fom Cauby’s—the intemedidae-value theoem [30]. But it was Cauhy who
gave rigorous deihitions and poofs for all the basic congégs; it was he wo realizzd
the farreading paver of the inequality-based limit corte and it vas he o gave
us—except for a ew implicit assumptionstaout unibrmity and d&@out completeness—
the moden rigorous gproad to calculus.

Mathemadicians ae used to taking thegorous bunddions of the calculus as a
completed wole Wha | have tied to do as a hist@n is to eveal wha went into
making up thagrea adievement.This needs to be doneecause completednoles ly
their ndure do not eveal the sparte stands thago into weaving them—especiall
when the stinds hae been considdbly transbrmed In Caudy’s work, though,one
trace indeed s left of the agin of rigorous calculus in@proximations—the letter
epsilon. The e coresponds to the initial letter in theowd “erreur” (or “error”), and
Caudy in fact useck for “error” in some of his wrk on pobability [31]. It is both
amusing and histacally appropriate thd the“e,” once used to desigigathe“error” in
approximations, has become ansbrmed into the kamacterstic symbol of pecision
and rgor in the calculusiAs Cauty transbrmed the algbra of inequalities fsm a tool
of gpproximation to a tool of igor, so he tansbrmed the calculus &dm a poverful
method of gneeting results to theigorous subject w knav today.
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