SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Determine the intervals of the domain over which the function is continuous. 1) Determine the intervals on which the function is increasing, decreasing, and constant. 2) Find the domain and the range for the function. 4) 5) Determine if the function is increasing or decreasing over the interval indicated. 6) $$f(x) = (x^2 - 9)^2$$; $(3, \infty)$ 7) $$f(x) = \frac{1}{x^2 + 1}$$; $(-\infty, 0)$ Determine whether the function is even, odd, or neither. 8) $$f(x) = 3x^2 - 2$$ 9) $$f(x) = (x + 7)(x + 6)$$ 10) $$f(x) = |x^2 + x|$$ Determine whether the graph of the given function is symmetric with respect to the y-axis, symmetric with respect to the origin, or neither. 11) $$f(x) = |2x| + 3$$ 12) $$f(x) = x + \frac{1}{x^2}$$ 12) _____ Write an equation that results in the indicated translation. 13) The absolute value function, shifted 7 units upward 13) _____ Use translations of one of the basic functions to sketch a graph of y = f(x) by hand. 14) $$y = x^2 - 4$$ 15) $$y = |x - 4|$$ Write an equation that results in the indicated translation. 16) The square root function, shifted 4 units to the left Use translations of one of the basic functions to sketch a graph of y = f(x) by hand. 17) $$y = \sqrt{x+2} + 1$$ Determine the domain and range of the function from the graph. 18 -10 Use translations of one of the basic functions defined by $y = x^2$, $y = x^3$, $y = \sqrt{x}$, or y = |x| to sketch a graph of y = f(x) by hand. Do not use a calculator. 21) $$y = (x-3)^2 - 2$$ 21) _____ 22) $$y = \sqrt{x+3} - 1$$ ## MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. The graph is a translation of one of the basic functions defined by $y = x^2$, $y = x^3$, $y = \sqrt{x}$, or y = |x|. Find the equation that defines the function. 23) A) $$y = (x - 5)^2$$ B) $$y = (x + 5)^2$$ C) $$y = x^2 - 5$$ 24) A) $$y = (x - 4)^2$$ B) $$y = (x - 4)^2 + 2$$ C) $$y = (x+4)^2$$ D) $$y = x^2 - 4$$ A) $$y = \sqrt{x} + 3$$ B) $$y = \sqrt{x + 5}$$ C) $$y = \sqrt{x - 5}$$ D) $$y = \sqrt{x+5} + 3$$ SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Write the equation that results in the desired transformation. 26) The cubing function, vertically shrunk by a factor of 0.9 - 26) _____ - 27) The absolute value function, vertically stretched by a factor of 2.4 and reflected across the x-axis - 27) _____ Use transformations of graphs to sketch the graphs of y₁ and y₂. Graph y₂ as a dashed curve. 28) $$y_1 = |x|$$; $y_2 = |x - 2|$ 29) $$y_1 = x^3$$; $y_2 = (x + 5)^3$ 30) $$y_1 = \sqrt[3]{x}$$, $y_2 = \sqrt[3]{-x} + 3$ Fill in each blank with the appropriate response. - 31) The graph of $y = -5(x+3)^2 8$ can be obtained from the graph of $y = x^2$ by shifting horizontally ___ units to the ____, vertically stretching by a factor of ___, reflecting across the __-axis, and shifting vertically ___ units in the _____ direction. - 31) _____ Give the equation of the function whose graph is described. - 32) The graph of $y = x^2$ is shifted 2 units to the left. This graph is then vertically shrunk by a 32) _____ factor of $\frac{1}{5}$ and reflected across the x-axis. Finally, the graph is shifted 8 units downward. - 33) The graph of y = |x| is reflected across the y-axis. This graph is then vertically stretched 33) _____ by a factor of 7.1. Finally, the graph is shifted 5 units downward. The graph of the given function is drawn with a solid line. The graph of a function, g(x), transformed from this one is drawn with a dashed line. Find a formula for g(x). 34) $$f(x) = x^2$$ Use transformations to graph the function. 35) f(x) = |-3 - x| 36) $$f(x) = 4|x-5|-5$$ 37) $$f(x) = -2(x+3)^2 + 4$$ The graph of the given function is drawn with a solid line. The graph of a function, g(x), transformed from this one is drawn with a dashed line. Find a formula for g(x). 38) f(x) = |x| Use the accompanying graph of y = f(x) to sketch the graph of the indicated function. 39) $$y = f(-x)$$ Determine the intervals on which the function is increasing, decreasing, and constant. 42) 42) _____ MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. The figure shows a transformation of the graph of $y = x^2$. Write the equation for the graph. A) $$g(x) = -x^2 - 2$$ B) $$g(x) = -x^2 + 2$$ C) $$g(x) = (x+2)^2$$ B) $$g(x) = -x^2 + 2$$ C) $g(x) = (x + 2)^2$ D) $g(x) = -(x - 2)^2$ 44) A) $$g(x) = \frac{1}{3}(x+1)^2$$ C) $$g(x) = \frac{1}{3}x^2 - 1$$ B) $$g(x) = (x - 1)^2$$ D) $$g(x) = \frac{1}{3}x^2 + 1$$ SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. The graph of the function y = f(x) is given below. Sketch the graph of y = |f(x)|. 45) 46) Use the graph, along with the indicated points, to give the solution set of the equation or inequality. 47) $y_1 > y_2$ 47) Solve the equation. 48) $$\left| -3x + 1 \right| = 12$$ 48) _____ 49) $$|7x + 2| + 7 = 14$$ 49) _____ Solve the inequality. 50) $$|2 - 3x| \le 11$$ 50) _____ 51) $$|x+6| - 2 > 16$$ 51) _____ Solve the equation. 52) $$|2x + 8| = |x + 9|$$ 52) _____ Solve the problem. 53) The formula to find Celsius temperature, C, given Fahrenheit temperature, F, is 53) _____ $C = \frac{5}{9}(F - 32)$. If the processing temperature of a chemical ranges from 302°F to 347°F, inclusive, then what is the range of its temperature in degrees Celsius? 54) The average annual growth rate of a coral reef in inches satisfies the inequality $|x - 2.74| \le 2.17$. What range of growth corresponds to this inequality? 54) _____ Find the requested value. 55) f(7) for f(x) = $$\begin{cases} 4x + 6 & \text{if } x \le 0 \\ 5 - 6x & \text{if } 0 < x < 6 \\ x & \text{if } x \ge 6 \end{cases}$$ Graph the function. 56) $f(x) = \begin{cases} x^2 - 9 & \text{if } x < -1 \\ 0 & \text{if } -1 \le x \le 1 \\ x^2 + 9 & \text{if } 1 < x \end{cases}$ Give a formula for a piecewise-defined function f for the graph shown. 57) 2 -2 -4 -4 58) _____ 58) 6 y 4 2 2 4 6 7 2 4 6 7 Find the requested composition or operation. 59) $$f(x) = 4x^2 + 2x + 4$$, $g(x) = 2x - 8$ Find $(g \circ f)(x)$. 60) $$f(x) = \frac{7}{x-3}$$, $g(x) = \frac{4}{3x}$ Find $(f \circ g)(x)$. 60) _____ Perform the requested composition or operation. 61) Find $$(f - g)(-2)$$ when $f(x) = -4x^2 + 6$ and $g(x) = x - 6$. 61) _____ 62) Find (fg)(3) when $$f(x) = x - 1$$ and $g(x) = -2x^2 + 13x - 7$. 62) _____ Find the specified domain. 63) For $$f(x) = 2x - 5$$ and $g(x) = \sqrt{x+2}$, what is the domain of $(f \circ g)$? 63) _____ Use the graphs to evaluate the expression. 64) _____ Find the specified domain. 65) For $$f(x) = x^2 - 64$$ and $g(x) = 2x + 3$, what is the domain of $\left(\frac{g}{f}\right)$? Use the graphs to evaluate the expression. 66) _____ y = g(x)5 y 4 3 2 -5 -4 -2 -3 -4 Determine whether $(f \circ g)(x) = x$ and whether $(g \circ f)(x) = x$. 67) $$f(x) = \sqrt[5]{x-4}$$, $g(x) = x^5 + 4$ 68) $$f(x) = x^3 + 1$$, $g(x) = \sqrt[3]{x - 1}$